Deep Industrial Image Anomaly Detection: A Survey

被引:43
|
作者
Liu, Jiaqi [1 ]
Xie, Guoyang [1 ,2 ]
Wang, Jinbao [1 ]
Li, Shangnian [1 ]
Wang, Chengjie [3 ]
Zheng, Feng [1 ]
Jin, Yaochu [2 ,4 ]
机构
[1] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[2] Univ Surrey, NICE Grp, Guildford GU2 7YX, England
[3] Tencent, Youtu Lab, Shanghai 200233, Peoples R China
[4] Bielefeld Univ, NICE Grp, D-33619 Bielefeld, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Image anomaly detection; defect detection; industrial manufacturing; deep learning; computer vision; DEFECT DETECTION; SALIENCY DETECTION; SEGMENTATION; LOCALIZATION; TRANSFORMER; NETWORK; SAMPLES; MODEL;
D O I
10.1007/s11633-023-1459-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from industrial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
引用
收藏
页码:104 / 135
页数:32
相关论文
共 50 条
  • [41] A review on deep anomaly detection in blockchain
    Mounnan, Oussama
    Manad, Otman
    Boubchir, Larbi
    El Mouatasim, Abdelkrim
    Daachi, Boubaker
    BLOCKCHAIN-RESEARCH AND APPLICATIONS, 2024, 5 (04):
  • [42] Deep learning for collective anomaly detection
    Ahmed, Mohiuddin
    Pathan, Al-Sakib Khan
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2020, 21 (01) : 137 - 145
  • [43] Anomaly Detection on Bridges Using Deep Learning With Partial Training
    Santos-Vila, Ivan
    Soto, Ricardo
    Vega, Emanuel
    Pena Fritz, Alvaro
    Crawford, Broderick
    IEEE ACCESS, 2024, 12 : 116530 - 116545
  • [44] Anomaly detection in electroluminescence images of heterojunction solar cells
    Korovin, Alexey
    Vasilev, Artem
    Egorov, Fedor
    Saykin, Dmitry
    Terukov, Evgeny
    Shakhray, Igor
    Zhukov, Leonid
    Budennyy, Semen
    SOLAR ENERGY, 2023, 259 : 130 - 136
  • [45] Deep learning-based defect detection in industrial CT volumes of castings
    Dakak, A. R.
    Kaftandjian, V
    Duvauchelle, P.
    Bouvet, P.
    INSIGHT, 2022, 64 (11) : 647 - 658
  • [46] Deep Learning-Based Integrated Circuit Surface Defect Detection: Addressing Information Density Imbalance for Industrial Application
    Wang, Xiaobin
    Gao, Shuang
    Guo, Jianlan
    Wang, Chu
    Xiong, Liping
    Zou, Yuntao
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2024, 17 (01)
  • [47] Deep image clustering: A survey
    Huang, Huajuan
    Wang, Chen
    Wei, Xiuxi
    Zhou, Yongquan
    NEUROCOMPUTING, 2024, 599
  • [48] Deep Learning Techniques for Anomaly based Intrusion Detection System: A Survey
    Kumar, Yogendra
    Chouhan, Lokesh
    Subba, Basant
    2021 INTERNATIONAL CONFERENCE ON COMPUTATIONAL PERFORMANCE EVALUATION (COMPE-2021), 2021, : 915 - 920
  • [49] Medical Image Segmentation for Anomaly Detection Using Deep Learning Techniques
    Thokar, Bibat
    Sapkota, Binod
    Dawadi, Babu R.
    Joshi, Shashidhar R.
    IEEE ACCESS, 2024, 12 : 185460 - 185481
  • [50] Image Forgery Detection using Deep Learning: A Survey
    Barad, Zankhana J.
    Goswami, Mukesh M.
    2020 6TH INTERNATIONAL CONFERENCE ON ADVANCED COMPUTING AND COMMUNICATION SYSTEMS (ICACCS), 2020, : 571 - 576