Deep Industrial Image Anomaly Detection: A Survey

被引:43
|
作者
Liu, Jiaqi [1 ]
Xie, Guoyang [1 ,2 ]
Wang, Jinbao [1 ]
Li, Shangnian [1 ]
Wang, Chengjie [3 ]
Zheng, Feng [1 ]
Jin, Yaochu [2 ,4 ]
机构
[1] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen 518055, Peoples R China
[2] Univ Surrey, NICE Grp, Guildford GU2 7YX, England
[3] Tencent, Youtu Lab, Shanghai 200233, Peoples R China
[4] Bielefeld Univ, NICE Grp, D-33619 Bielefeld, Germany
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Image anomaly detection; defect detection; industrial manufacturing; deep learning; computer vision; DEFECT DETECTION; SALIENCY DETECTION; SEGMENTATION; LOCALIZATION; TRANSFORMER; NETWORK; SAMPLES; MODEL;
D O I
10.1007/s11633-023-1459-z
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The recent rapid development of deep learning has laid a milestone in industrial image anomaly detection (IAD). In this paper, we provide a comprehensive review of deep learning-based image anomaly detection techniques, from the perspectives of neural network architectures, levels of supervision, loss functions, metrics and datasets. In addition, we extract the promising setting from industrial manufacturing and review the current IAD approaches under our proposed setting. Moreover, we highlight several opening challenges for image anomaly detection. The merits and downsides of representative network architectures under varying supervision are discussed. Finally, we summarize the research findings and point out future research directions. More resources are available at https://github.com/M-3LAB/awesome-industrial-anomaly-detection.
引用
收藏
页码:104 / 135
页数:32
相关论文
共 50 条
  • [21] Anomaly Detection on Industrial Electrical Systems using Deep Learning
    Carratu, Marco
    Gallo, Vincenzo
    Pietrosanto, Antonio
    Sommella, Paolo
    Patrizi, Gabriele
    Bartolini, Alessandro
    Ciani, Lorenzo
    Catelani, Marcantonio
    Grasso, Francesco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [22] Industrial Anomaly Detection with Skip Autoencoder and Deep Feature Extractor
    Tang, Ta-Wei
    Hsu, Hakiem
    Huang, Wei-Ren
    Li, Kuan-Ming
    SENSORS, 2022, 22 (23)
  • [23] Pavement Defect Detection With Deep Learning: A Comprehensive Survey
    Fan, Lili
    Wang, Dandan
    Wang, Junhao
    Li, Yunjie
    Cao, Yifeng
    Liu, Yi
    Chen, Xiaoming
    Wang, Yutong
    IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (03): : 4292 - 4311
  • [24] A Survey on Adversarial Deep Learning Robustness in Medical Image Analysis
    Apostolidis, Kyriakos D.
    Papakostas, George A.
    ELECTRONICS, 2021, 10 (17)
  • [25] Deep anomaly detection in expressway based on edge computing and deep learning
    Wang, Juan
    Wang, Meng
    Liu, Qingling
    Yin, Guanxiang
    Zhang, Yuejin
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2022, 13 (03) : 1293 - 1305
  • [26] A survey on deep learning-based image forgery detection
    Mehrjardi, Fatemeh Zare
    Latif, Ali Mohammad
    Zarchi, Mohsen Sardari
    Sheikhpour, Razieh
    PATTERN RECOGNITION, 2023, 144
  • [27] Anomaly detection for industrial quality assurance: A comparative evaluation of unsupervised deep learning models
    Zipfel, Justus
    Verworner, Felix
    Fischer, Marco
    Wieland, Uwe
    Kraus, Mathias
    Zschech, Patrick
    COMPUTERS & INDUSTRIAL ENGINEERING, 2023, 177
  • [28] Deep Learning Based Synthetic Image Generation for Defect Detection in Additive Manufacturing Industrial Environments
    Matuszczyk, Daniel
    Tschorn, Niklas
    Weichert, Frank
    2022 7TH INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND ROBOTICS RESEARCH, ICMERR, 2022, : 209 - 218
  • [29] A survey of deep learning-based network anomaly detection
    Kwon, Donghwoon
    Kim, Hyunjoo
    Kim, Jinoh
    Suh, Sang C.
    Kim, Ikkyun
    Kim, Kuinam J.
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2019, 22 (Suppl 1): : 949 - 961
  • [30] Anomaly Detection Techniques using Deep Learning in IoT: A Survey
    Sharma, Bhawana
    Sharma, Lokesh
    Lal, Chhagan
    PROCEEDINGS OF 2019 INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND KNOWLEDGE ECONOMY (ICCIKE' 2019), 2019, : 146 - 149