Enhanced Second-Order Off-Grid DOA Estimation Method via Sparse Reconstruction Based on Extended Coprime Array Under Impulsive Noise

被引:10
作者
Dai, Zehua [1 ]
Zhang, Liang [1 ]
Wang, Can [1 ]
Han, Xiao [1 ]
Yin, Jingwei [1 ]
机构
[1] Harbin Engn Univ, Coll Underwater Acoust Engn, Natl Key Lab Underwater Acoust Technol, Key Lab Polar Acoust & Applicat,Minist Educ, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Direction-of-arrival (DOA); extended coprime array (ECA); improved iterative sparse projection (Imp-ISP); impulse noise; multiple measurement vector (MMV); second-order off-grid model; sparse reconstruction; ARRIVAL ESTIMATION; CO-ARRAY; ALGORITHM; OPTIMIZATION;
D O I
10.1109/TIM.2023.3328069
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The extended coprime array (ECA) can detect a significantly larger number of targets compared to the actual number of sensor elements. Considering the presence of impulse noise in real environments, the phased fractional low-order moment (PFLOM) is introduced to construct an equivalent covariance matrix. In this article, we propose a multiple measurement vector (MMV) model based on ECA, inspired by the spatial smoothing (SS) technique. The MMV model, when compared to the single measurement vector (SMV) model, enables sparse reconstruction algorithms to achieve higher accuracy in direction-of-arrival (DOA) estimation. The traditional iterative sparse projection (ISP) DOA estimation method lacks an extrapolation step, which provides an opportunity for improvement. Hence, we propose the improved ISP (Imp-ISP) algorithm for DOA estimation, equipped with an extrapolation step to enhance performance. Moreover, we propose a second-order Taylor expansion off-grid model, in contrast to the first-order Taylor interpolation off-grid model, to achieve higher DOA estimation accuracy at a low generalized signal-to-noise ratio (GSNR). To validate the performance of the proposed algorithm, we conducted computer simulations and field experiments, and the results demonstrate its superiority over existing methods.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 45 条
[1]   Performance Analysis of Distributed Wireless Sensor Networks for Gaussian Source Estimation in the Presence of Impulsive Noise [J].
Alam, Md Sahabul ;
Kaddoum, Georges ;
Agba, Basile L. .
IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) :803-807
[2]   Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter [J].
Belkacemi, Hocine ;
Marcos, Sylvie .
SIGNAL PROCESSING, 2007, 87 (07) :1547-1558
[3]   APPLICATIONS OF NUMBERED UNDIRECTED GRAPHS [J].
BLOOM, GS ;
GOLOMB, SW .
PROCEEDINGS OF THE IEEE, 1977, 65 (04) :562-570
[4]   Distributed optimization and statistical learning via the alternating direction method of multipliers [J].
Boyd S. ;
Parikh N. ;
Chu E. ;
Peleato B. ;
Eckstein J. .
Foundations and Trends in Machine Learning, 2010, 3 (01) :1-122
[5]   DOA Estimation for Coprime Array With Mixed Noise Scenario via Phased Fractional Low-Order Moment [J].
Dong, Xudong ;
Zhang, Xiaofei ;
Zhao, Jun ;
Sun, Meng .
IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) :2567-2571
[6]   Fractional Low-Order Moments Based DOA Estimation With Co-Prime Array in Presence of Impulsive Noise [J].
Dong, Xudong ;
Sun, Meng ;
Zhang, Xiaofei ;
Zhao, Jun .
IEEE ACCESS, 2021, 9 :23537-23543
[7]   Information Measures, Inequalities and Performance Bounds for Parameter Estimation in Impulsive Noise Environments [J].
Fahs, Jihad ;
Abou-Faycal, Ibrahim .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (03) :1825-1844
[8]   Sparse Signal Recovery Using Iterative Proximal Projection [J].
Ghayem, Fateme ;
Sadeghi, Mostafa ;
Babaie-Zadeh, Massoud ;
Chatterjee, Saikat ;
Skoglund, Mikael ;
Jutten, Christian .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) :879-894
[9]   Efficient DOA estimation based on variable least Lncosh algorithm under impulsive noise interferences [J].
Guo, Kun ;
Guo, Longxiang ;
Li, Yingsong ;
Zhang, Liang ;
Dai, Zehua ;
Yin, Jingwei .
DIGITAL SIGNAL PROCESSING, 2022, 122
[10]   Off-Grid Space Alternating Sparse Bayesian Learning [J].
Guo, Qijia ;
Xin, Zhinan ;
Zhou, Tian ;
Xu, Sen .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72