Enhanced Second-Order Off-Grid DOA Estimation Method via Sparse Reconstruction Based on Extended Coprime Array Under Impulsive Noise

被引:9
作者
Dai, Zehua [1 ]
Zhang, Liang [1 ]
Wang, Can [1 ]
Han, Xiao [1 ]
Yin, Jingwei [1 ]
机构
[1] Harbin Engn Univ, Coll Underwater Acoust Engn, Natl Key Lab Underwater Acoust Technol, Key Lab Polar Acoust & Applicat,Minist Educ, Harbin 150001, Peoples R China
基金
美国国家科学基金会;
关键词
Direction-of-arrival (DOA); extended coprime array (ECA); improved iterative sparse projection (Imp-ISP); impulse noise; multiple measurement vector (MMV); second-order off-grid model; sparse reconstruction; ARRIVAL ESTIMATION; CO-ARRAY; ALGORITHM; OPTIMIZATION;
D O I
10.1109/TIM.2023.3328069
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The extended coprime array (ECA) can detect a significantly larger number of targets compared to the actual number of sensor elements. Considering the presence of impulse noise in real environments, the phased fractional low-order moment (PFLOM) is introduced to construct an equivalent covariance matrix. In this article, we propose a multiple measurement vector (MMV) model based on ECA, inspired by the spatial smoothing (SS) technique. The MMV model, when compared to the single measurement vector (SMV) model, enables sparse reconstruction algorithms to achieve higher accuracy in direction-of-arrival (DOA) estimation. The traditional iterative sparse projection (ISP) DOA estimation method lacks an extrapolation step, which provides an opportunity for improvement. Hence, we propose the improved ISP (Imp-ISP) algorithm for DOA estimation, equipped with an extrapolation step to enhance performance. Moreover, we propose a second-order Taylor expansion off-grid model, in contrast to the first-order Taylor interpolation off-grid model, to achieve higher DOA estimation accuracy at a low generalized signal-to-noise ratio (GSNR). To validate the performance of the proposed algorithm, we conducted computer simulations and field experiments, and the results demonstrate its superiority over existing methods.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 45 条
  • [1] Performance Analysis of Distributed Wireless Sensor Networks for Gaussian Source Estimation in the Presence of Impulsive Noise
    Alam, Md Sahabul
    Kaddoum, Georges
    Agba, Basile L.
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2018, 25 (06) : 803 - 807
  • [2] Robust subspace-based algorithms for joint angle/Doppler estimation in non-Gaussian clutter
    Belkacemi, Hocine
    Marcos, Sylvie
    [J]. SIGNAL PROCESSING, 2007, 87 (07) : 1547 - 1558
  • [3] APPLICATIONS OF NUMBERED UNDIRECTED GRAPHS
    BLOOM, GS
    GOLOMB, SW
    [J]. PROCEEDINGS OF THE IEEE, 1977, 65 (04) : 562 - 570
  • [4] Distributed optimization and statistical learning via the alternating direction method of multipliers
    Boyd S.
    Parikh N.
    Chu E.
    Peleato B.
    Eckstein J.
    [J]. Foundations and Trends in Machine Learning, 2010, 3 (01): : 1 - 122
  • [5] DOA Estimation for Coprime Array With Mixed Noise Scenario via Phased Fractional Low-Order Moment
    Dong, Xudong
    Zhang, Xiaofei
    Zhao, Jun
    Sun, Meng
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (11) : 2567 - 2571
  • [6] Fractional Low-Order Moments Based DOA Estimation With Co-Prime Array in Presence of Impulsive Noise
    Dong, Xudong
    Sun, Meng
    Zhang, Xiaofei
    Zhao, Jun
    [J]. IEEE ACCESS, 2021, 9 : 23537 - 23543
  • [7] Information Measures, Inequalities and Performance Bounds for Parameter Estimation in Impulsive Noise Environments
    Fahs, Jihad
    Abou-Faycal, Ibrahim
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2018, 64 (03) : 1825 - 1844
  • [8] Sparse Signal Recovery Using Iterative Proximal Projection
    Ghayem, Fateme
    Sadeghi, Mostafa
    Babaie-Zadeh, Massoud
    Chatterjee, Saikat
    Skoglund, Mikael
    Jutten, Christian
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) : 879 - 894
  • [9] Efficient DOA estimation based on variable least Lncosh algorithm under impulsive noise interferences
    Guo, Kun
    Guo, Longxiang
    Li, Yingsong
    Zhang, Liang
    Dai, Zehua
    Yin, Jingwei
    [J]. DIGITAL SIGNAL PROCESSING, 2022, 122
  • [10] Off-Grid Space Alternating Sparse Bayesian Learning
    Guo, Qijia
    Xin, Zhinan
    Zhou, Tian
    Xu, Sen
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2023, 72