Parallel learning by multitasking neural networks

被引:3
|
作者
Agliari, Elena [1 ]
Alessandrelli, Andrea [2 ,5 ]
Barra, Adriano [3 ,5 ]
Ricci-Tersenghi, Federico [4 ,5 ,6 ]
机构
[1] Sapienza Univ Roma, Dipartimento Matemat, Piazzale Aldo Moro 5, I-00185 Rome, Italy
[2] Univ Pisa, Dipartimento Informat, Lungarno Antonio Pacinotti 43, I-56126 Pisa, Italy
[3] Univ Salento, Dipartimento Matemat & Fis, Via Arnesano, I-73100 Lecce, Italy
[4] Sapienza Univ Roma, Dipartimento Fis, Piazzale Aldo Moro 2, I-00185 Rome, Italy
[5] Ist Nazl Fis Nucl, Sez Roma1 & Lecce, Lecce, Italy
[6] CNR, Nanotec, Rome Unit, I-00185 Rome, Italy
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2023年 / 2023卷 / 11期
关键词
machine learning; computational neuroscience; optimization over networks; systems neuroscience; MODEL;
D O I
10.1088/1742-5468/ad0a86
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Parallel learning, namely the simultaneous learning of multiple patterns, constitutes a modern challenge for neural networks. While this cannot be accomplished by standard Hebbian associative neural networks, in this paper we show how the multitasking Hebbian network (a variation on the theme of the Hopfield model, working on sparse datasets) is naturally able to perform this complex task. We focus on systems processing in parallel a finite (up to logarithmic growth in the size of the network) number of patterns, mirroring the low-storage setting of standard associative neural networks. When patterns to be reconstructed are mildly diluted, the network handles them hierarchically, distributing the amplitudes of their signals as power laws w.r.t. the pattern information content (hierarchical regime), while, for strong dilution, the signals pertaining to all the patterns are simultaneously raised with the same strength (parallel regime). Further, we prove that the training protocol (either supervised or unsupervised) neither alters the multitasking performances nor changes the thresholds for learning. We also highlight (analytically and by Monte Carlo simulations) that a standard cost function (i.e. the Hamiltonian) used in statistical mechanics exhibits the same minima as a standard loss function (i.e. the sum of squared errors) used in machine learning.
引用
收藏
页数:38
相关论文
共 50 条
  • [31] On neural networks and learning systems for business computing
    Li, Yawen
    Jiang, Weifeng
    Yang, Liu
    Wu, Tian
    NEUROCOMPUTING, 2018, 275 : 1150 - 1159
  • [32] A Study of Learning Issues in Feedforward Neural Networks
    Teso-Fz-Betono, Adrian
    Zulueta, Ekaitz
    Cabezas-Olivenza, Mireya
    Teso-Fz-Betono, Daniel
    Fernandez-Gamiz, Unai
    MATHEMATICS, 2022, 10 (17)
  • [33] Representational Distance Learning for Deep Neural Networks
    McClure, Patrick
    Kriegeskorte, Nikolaus
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2016, 10
  • [34] Towards biologically plausible learning in neural networks
    Fernandez, Jesus Garcia
    Hortal, Enrique
    Mehrkanoon, Siamak
    2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [35] Neural Networks & Machine Learning in Cognitive Radar
    Smith, Graeme E.
    Gurburt, Sevgi Z.
    Bruggenwirth, Stefan
    John-Baptiste, Peter
    2020 IEEE RADAR CONFERENCE (RADARCONF20), 2020,
  • [36] Deep Learning with Dense Random Neural Networks
    Gelenbe, Erol
    Yin, Yonghua
    MAN-MACHINE INTERACTIONS 5, ICMMI 2017, 2018, 659 : 3 - 18
  • [37] Can Deep Learning Only Be Neural Networks?
    Zhou, Zhi-Hua
    PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING (WSDM '20), 2020, : 6 - 6
  • [38] Investigating Transfer Learning in Graph Neural Networks
    Kooverjee, Nishai
    James, Steven
    van Zyl, Terence
    ELECTRONICS, 2022, 11 (08)
  • [39] Learning Coagulation Processes With Combinatorial Neural Networks
    Wang, Justin L.
    Curtis, Jeffrey H.
    Riemer, Nicole
    West, Matthew
    JOURNAL OF ADVANCES IN MODELING EARTH SYSTEMS, 2022, 14 (12)
  • [40] Deep Learning for Load Forecasting: Sequence to Sequence Recurrent Neural Networks With Attention
    Sehovac, Ljubisa
    Grolinger, Katarina
    IEEE ACCESS, 2020, 8 : 36411 - 36426