Synthesis of ternary GNP-CNT-ZrO2 nanocomposite as a high-performance anode for lithium-ion batteries

被引:2
|
作者
Ghazanlou, Siavash Imanian [1 ]
Ghazanlou, Siamak Imanian [2 ]
Ghazanlou, Sroush Imanian [3 ]
Mohammadpour, Naghmeh [4 ]
Hussainova, Irina [5 ]
机构
[1] Univ Quebec Chicoutimi, Dept Appl Sci, Saguenay, PQ G7H 2B1, Canada
[2] Iran Univ Sci & Technol IUST, Sch Adv Technol, Nanotechnol Dept, Narmak, Tehran 1684613114, Iran
[3] Semnan Univ, Fac New Sci & Technol, Dept Nanotechnol, Semnan, Iran
[4] Univ Tehran, Coll Engn, Sch Min, Tehran 111554563, Iran
[5] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate 5, EE-19086 Tallinn, Estonia
关键词
Li-ion batteries; GNP-CNT-ZrO; 2; Nanocomposite; Anode; Electrochemical behavior; LONG-LIFETIME ANODE; CARBON NANOTUBES; LARGE-CAPACITY; ELECTRODES; NANOPARTICLES; COMPOSITES; HYBRID; ENERGY; BEHAVIOR;
D O I
10.1016/j.jiec.2023.07.050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modulation of electrical charge transport in electrodes through mesoscale structural design is crucial in developing high-performance lithium-ion batteries (LIBs). In this study, three nanocomposites were fabricated by incorporating ZrO2 nanoparticles into carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and GNP-CNT structures. The synthesizing was a simple hydrothermal method followed by annealing to prepare CNT-ZrO2 (C-Z), GNP-ZrO2 (G-Z), and GNP-CNT-ZrO2 (G-C-Z) materials for a three-dimensional highly efficient anode for LIBs. The electrochemical performance was evaluated using cyclic voltammetry (CV), which demonstrated excellent reversibility for the G-C-Z material. A study on the rate performance confirmed reversible discharge capacity of 512, 274, 248, 206, and 175 mAh/g at 0.2, 1, 5, 15, and 20 A/g, respectively, for the G-C-Z anode, which demonstrated the highest reversibility among the synthesized anodes. Even after 500 cycles at a current density of 5 A/g, this electrode maintained its specific capacity and electrochemical cycling reversibility at almost 98.5%. The lower capacity of C-Z and G-Z structures was attributed to the aggregation of constituents. The Nyquist plots after 500 cycles demonstrated the lowest charge transfer resistance (Rct) of 52.19 X and the highest value of Li-ion diffusion coefficient (DLi+ ) for the G-C-Z anode, ensuring excellent long-life electron conductivity. (c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [41] Lithium gallium oxide (LiGaO2): High-performance anode material for lithium-ion batteries
    Ma, Fukun
    Guan, Shengjing
    Wang, Yan-Jie
    Liu, Zhimeng
    Li, Wenfang
    JOURNAL OF ALLOYS AND COMPOUNDS, 2024, 976
  • [42] Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries
    Yan, Zihao
    Li, Jianbao
    Chen, Qing
    Chen, Shuaifeng
    Luo, Lijie
    Chen, Yongjun
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2022, 5 (04) : 2977 - 2987
  • [43] Synthesis of CoSe2/Mxene composites using as high-performance anode materials for lithium-ion batteries
    Zihao Yan
    Jianbao Li
    Qing Chen
    Shuaifeng Chen
    Lijie Luo
    Yongjun Chen
    Advanced Composites and Hybrid Materials, 2022, 5 : 2977 - 2987
  • [44] Synthesis of NiO/Ni nanocomposite anode material for high rate lithium-ion batteries
    Xia, Qing
    Zhao, Hailei
    Teng, Yongqiang
    Du, Zhihong
    Wang, Jie
    Zhang, Tianhou
    MATERIALS LETTERS, 2015, 142 : 67 - 70
  • [45] Mn2SiO4/CNT composites as anode materials for high performance lithium-ion batteries
    Zhenzhou Sun
    Li Yan
    Zilin Yi
    Jiaxing Zhou
    Min Wang
    Meng Yang
    Xiangyu Zhao
    Liqun Ma
    Journal of Materials Science: Materials in Electronics, 2018, 29 : 7867 - 7875
  • [46] Perovskite-Type CaVO3 Nanocomposite as High-Performance Anode Material for Lithium-Ion Batteries
    Sun, Lei
    Lin, Zifeng
    Hu, Yucheng
    Tan, Lin
    Li, Xiaolei
    Yang, Xiaojiao
    Liu, Ying
    NANO LETTERS, 2024, 24 (49) : 15525 - 15532
  • [47] Mn2SiO4/CNT composites as anode materials for high performance lithium-ion batteries
    Sun, Zhenzhou
    Yan, Li
    Yi, Zilin
    Zhou, Jiaxing
    Wang, Min
    Yang, Meng
    Zhao, Xiangyu
    Ma, Liqun
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (09) : 7867 - 7875
  • [48] A high-performance tin phosphide/carbon composite anode for lithium-ion batteries
    Wang, Miao
    Weng, Guo-Ming
    Yasin, Ghulam
    Kumar, Mohan
    Zhao, Wei
    DALTON TRANSACTIONS, 2020, 49 (46) : 17026 - 17032
  • [49] Twisted carbonaceous nanoribbons as high-performance anode material for lithium-ion batteries
    Hao-Ran Wang
    Wen-Jun Cai
    Yong-Gang Yang
    Yi Li
    Journal of Nanoparticle Research, 2019, 21
  • [50] New Insights into the High-Performance Black Phosphorus Anode for Lithium-Ion Batteries
    Li, Minsi
    Li, Weihan
    Hu, Yongfeng
    Yakovenko, Andrey A.
    Ren, Yang
    Luo, Jing
    Holden, William M.
    Shakouri, Mohsen
    Xiao, Qunfeng
    Gao, Xuejie
    Zhao, Feipeng
    Liang, Jianwen
    Feng, Renfei
    Li, Ruying
    Seidler, Gerald T.
    Brandys, Frank
    Divigalpitiya, Ranjith
    Sham, Tsun-Kong
    Sun, Xueliang
    ADVANCED MATERIALS, 2021, 33 (35)