Synthesis of ternary GNP-CNT-ZrO2 nanocomposite as a high-performance anode for lithium-ion batteries

被引:2
|
作者
Ghazanlou, Siavash Imanian [1 ]
Ghazanlou, Siamak Imanian [2 ]
Ghazanlou, Sroush Imanian [3 ]
Mohammadpour, Naghmeh [4 ]
Hussainova, Irina [5 ]
机构
[1] Univ Quebec Chicoutimi, Dept Appl Sci, Saguenay, PQ G7H 2B1, Canada
[2] Iran Univ Sci & Technol IUST, Sch Adv Technol, Nanotechnol Dept, Narmak, Tehran 1684613114, Iran
[3] Semnan Univ, Fac New Sci & Technol, Dept Nanotechnol, Semnan, Iran
[4] Univ Tehran, Coll Engn, Sch Min, Tehran 111554563, Iran
[5] Tallinn Univ Technol, Dept Mech & Ind Engn, Ehitajate 5, EE-19086 Tallinn, Estonia
关键词
Li-ion batteries; GNP-CNT-ZrO; 2; Nanocomposite; Anode; Electrochemical behavior; LONG-LIFETIME ANODE; CARBON NANOTUBES; LARGE-CAPACITY; ELECTRODES; NANOPARTICLES; COMPOSITES; HYBRID; ENERGY; BEHAVIOR;
D O I
10.1016/j.jiec.2023.07.050
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The modulation of electrical charge transport in electrodes through mesoscale structural design is crucial in developing high-performance lithium-ion batteries (LIBs). In this study, three nanocomposites were fabricated by incorporating ZrO2 nanoparticles into carbon nanotubes (CNTs), graphene nanoplatelets (GNPs), and GNP-CNT structures. The synthesizing was a simple hydrothermal method followed by annealing to prepare CNT-ZrO2 (C-Z), GNP-ZrO2 (G-Z), and GNP-CNT-ZrO2 (G-C-Z) materials for a three-dimensional highly efficient anode for LIBs. The electrochemical performance was evaluated using cyclic voltammetry (CV), which demonstrated excellent reversibility for the G-C-Z material. A study on the rate performance confirmed reversible discharge capacity of 512, 274, 248, 206, and 175 mAh/g at 0.2, 1, 5, 15, and 20 A/g, respectively, for the G-C-Z anode, which demonstrated the highest reversibility among the synthesized anodes. Even after 500 cycles at a current density of 5 A/g, this electrode maintained its specific capacity and electrochemical cycling reversibility at almost 98.5%. The lower capacity of C-Z and G-Z structures was attributed to the aggregation of constituents. The Nyquist plots after 500 cycles demonstrated the lowest charge transfer resistance (Rct) of 52.19 X and the highest value of Li-ion diffusion coefficient (DLi+ ) for the G-C-Z anode, ensuring excellent long-life electron conductivity. (c) 2023 The Korean Society of Industrial and Engineering Chemistry. Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:209 / 221
页数:13
相关论文
共 50 条
  • [21] CuCo2Se4/γ-Graphyne nanocomposite: A high-performance anode material for lithium-ion batteries
    Hui, Xin
    Zhang, Yafei
    He, Shan
    Zhao, Jiachang
    Wu, Bin
    JOURNAL OF POWER SOURCES, 2025, 640
  • [22] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Fu, Yuan-Xiang
    Pei, Xian-Yinan
    Mo, Dong-Chuan
    Lyu, Shu-Shen
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2019, 30 (05) : 5092 - 5097
  • [23] Synthesis of Porous NiO Nanorods as High-Performance Anode Materials for Lithium-Ion Batteries
    Li, Qian
    Huang, Gang
    Yin, Dongming
    Wu, Yaoming
    Wang, Limin
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2016, 33 (10) : 764 - 770
  • [24] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    Rare Metals, 2019, 38 : 199 - 205
  • [25] Synthesis and electrochemical properties of artificial graphite as an anode for high-performance lithium-ion batteries
    Ma, Canliang
    Zhao, Yun
    Li, Jin
    Song, Yan
    Shi, Jingli
    Guo, Quangui
    Liu, Lang
    CARBON, 2013, 64 : 553 - 556
  • [26] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Jin Li
    Juan-Yu Yang
    Jian-Tao Wang
    Shi-Gang Lu
    RareMetals, 2019, 38 (03) : 199 - 205
  • [27] Synthesis of macroporous carbon materials as anode material for high-performance lithium-ion batteries
    Yuan-Xiang Fu
    Xian-Yinan Pei
    Dong-Chuan Mo
    Shu-Shen Lyu
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 5092 - 5097
  • [28] A scalable synthesis of silicon nanoparticles as high-performance anode material for lithium-ion batteries
    Li, Jin
    Yang, Juan-Yu
    Wang, Jian-Tao
    Lu, Shi-Gang
    RARE METALS, 2019, 38 (03) : 199 - 205
  • [29] Electrospinning Synthesis of Porous NiCoO2 Nanofibers as High-Performance Anode for Lithium-Ion Batteries
    Wang, Jinkai
    Xie, Sanmu
    Li, Li
    Li, Zhihui
    Asiri, Abdullah M.
    Marwani, Hadi M.
    Han, Xiaogang
    Wang, Hongkang
    PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION, 2019, 36 (07)
  • [30] Synthesis of the microspherical structure of ternary SiOx@SnO2@C by a hydrothermal method as the anode for high-performance lithium-ion batteries
    Gu, Zhicliang
    Li, Wenli
    Chen, Yuxi
    Xia, Xiaohong
    Liu, Hongbo
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (05): : 2333 - 2341