The Dimension of Divisibility Orders and Multiset Posets

被引:0
|
作者
Haiman, Milan [1 ]
机构
[1] MIT, Cambridge, MA 02139 USA
来源
ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS | 2024年 / 41卷 / 03期
基金
美国国家科学基金会;
关键词
Partially ordered sets; Dimension; Multisets; Divisibility; SETS;
D O I
10.1007/s11083-023-09653-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The Dushnik-Miller dimension of a poset P is the least d for which P can be embedded into a product of d chains. Lewis and Souza isibility order on the interval of integers [N/kappa, N] is bounded above by kappa (log kappa)(1+o(1)) and below by Omega ((log kappa/log log kappa)(2)). We improve the upper bound to O((log kappa)(3)/(log log kappa)(2)). We deduce this bound from a more general result on posets of multisets ordered by inclusion. We also consider other divisibility orders and give a bound for polynomials ordered by divisibility.
引用
收藏
页码:693 / 707
页数:15
相关论文
共 35 条
  • [31] On-Line Dimension for Posets Excluding Two Long Incomparable Chains
    Felsner, Stefan
    Krawczyk, Tomasz
    Trotter, William T.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2013, 30 (01): : 1 - 12
  • [32] On-Line Dimension for Posets Excluding Two Long Incomparable Chains
    Stefan Felsner
    Tomasz Krawczyk
    William T. Trotter
    Order, 2013, 30 : 1 - 12
  • [33] Dimension Preserving Contractions and a Finite List of 3-Irreducible Posets
    Noah Streib
    Order, 2012, 29 : 165 - 176
  • [34] Planar Posets that are Accessible from Below Have Dimension at Most 6
    Biro, Csaba
    Bosek, Bartlomiej
    Smith, Heather C.
    Trotter, William T.
    Wang, Ruidong
    Young, Stephen J.
    ORDER-A JOURNAL ON THE THEORY OF ORDERED SETS AND ITS APPLICATIONS, 2021, 38 (01): : 21 - 36
  • [35] Dimension Bounds on Classes of Interval Orders with Restricted Representation
    Biro, Csaba
    Wan, Sida
    GRAPHS AND COMBINATORICS, 2024, 40 (06)