Learning Correlated Noise in a 39-Qubit Quantum Processor

被引:7
|
作者
Harper, Robin [1 ]
Flammia, Steven T. [2 ,3 ]
机构
[1] Univ Sydney, Ctr Engn Quantum Syst, Sch Phys, Sydney, NSW 2006, Australia
[2] AWS Ctr Quantum Comp, Pasadena, CA 91125 USA
[3] CALTECH, Inst Quantum Informat & Matter IQIM, Pasadena, CA 91125 USA
来源
PRX QUANTUM | 2023年 / 4卷 / 04期
关键词
ERROR-CORRECTION; POLYNOMIAL-TIME; COMPUTATION; ALGORITHMS;
D O I
10.1103/PRXQuantum.4.040311
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Building error-corrected quantum computers relies crucially on measuring and modeling noise on candidate devices. In particular, optimal error correction requires knowing the noise that occurs in the device as it executes the circuits required for error correction. As devices increase in size, we will become more reliant on efficient models of this noise. However, such models must still retain the information required to optimize the algorithms used for error correction. Here, we propose a method of extracting detailed information of the noise in a device running syndrome extraction circuits. We introduce and execute an experiment on a superconducting device using 39 of its qubits in a surface code doing repeated rounds of syndrome extraction but omitting the midcircuit measurement and reset. We show how to extract from the 20 data qubits the information needed to build noise models of various sophistication in the form of graphical models. These models give efficient descriptions of noise in large-scale devices and are designed to illuminate the effectiveness of error correction against correlated noise. Our estimates are furthermore precise: we learn a consistent global distribution where all one- and two-qubit error rates are known to a relative error of 0.1%. By extrapolating our experimentally learned noise models toward lower error rates, we demonstrate that accurate correlated noise models are increasingly important for successfully predicting subthreshold behavior in quantum error-correction experiments.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Strongly correlated quantum walks with a 12-qubit superconducting processor
    Yan, Zhiguang
    Zhang, Yu-Ran
    Gong, Ming
    Wu, Yulin
    Zheng, Yarui
    Li, Shaowei
    Wang, Can
    Liang, Futian
    Lin, Jin
    Xu, Yu
    Guo, Cheng
    Sun, Lihua
    Peng, Cheng-Zhi
    Xia, Keyu
    Deng, Hui
    Rong, Hao
    You, J. Q.
    Nori, Franco
    Fan, Heng
    Zhu, Xiaobo
    Pan, Jian-Wei
    SCIENCE, 2019, 364 (6442) : 753 - +
  • [2] Two-Qubit Spectroscopy of Spatiotemporally Correlated Quantum Noise in Superconducting Qubits
    von Luepke, Uwe
    Beaudoin, Felix
    Norris, Leigh M.
    Sung, Youngkyu
    Winik, Roni
    Qiu, Jack Y.
    Kjaergaard, Morten
    Kim, David
    Yoder, Jonilyn
    Gustavsson, Simon
    Viola, Lorenza
    Oliver, William D.
    PRX QUANTUM, 2020, 1 (01):
  • [3] Learning and forecasting open quantum dynamics with correlated noise
    Zhang, Xinfang
    Wu, Zhihao
    White, Gregory A. L.
    Xiang, Zhongcheng
    Hu, Shun
    Peng, Zhihui
    Liu, Yong
    Zheng, Dongning
    Fu, Xiang
    Huang, Anqi
    Poletti, Dario
    Modi, Kavan
    Wu, Junjie
    Deng, Mingtang
    Guo, Chu
    COMMUNICATIONS PHYSICS, 2025, 8 (01):
  • [4] A four-qubit germanium quantum processor
    Nico W. Hendrickx
    William I. L. Lawrie
    Maximilian Russ
    Floor van Riggelen
    Sander L. de Snoo
    Raymond N. Schouten
    Amir Sammak
    Giordano Scappucci
    Menno Veldhorst
    Nature, 2021, 591 : 580 - 585
  • [5] A four-qubit germanium quantum processor
    Hendrickx, Nico W.
    Lawrie, William I. L.
    Russ, Maximilian
    van Riggelen, Floor
    de Snoo, Sander L.
    Schouten, Raymond N.
    Sammak, Amir
    Scappucci, Giordano
    Veldhorst, Menno
    NATURE, 2021, 591 (7851) : 580 - +
  • [6] Toward quantum computation: A five-qubit quantum processor
    Steffen, M
    Vandersypen, LMK
    Chuang, IL
    IEEE MICRO, 2001, 21 (02) : 24 - 34
  • [7] Simulating noise on a quantum processor: interactions between a qubit and resonant two-level system bath
    Cho, Yujin
    Jasrasaria, Dipti
    Ray, Keith G.
    Tennant, Daniel M.
    Lordi, Vincenzo
    Dubois, Jonathan
    Rosen, Yaniv J.
    QUANTUM SCIENCE AND TECHNOLOGY, 2023, 8 (04)
  • [8] A programmable two-qubit quantum processor in silicon
    T. F. Watson
    S. G. J. Philips
    E. Kawakami
    D. R. Ward
    P. Scarlino
    M. Veldhorst
    D. E. Savage
    M. G. Lagally
    Mark Friesen
    S. N. Coppersmith
    M. A. Eriksson
    L. M. K. Vandersypen
    Nature, 2018, 555 : 633 - 637
  • [9] A programmable two-qubit quantum processor in silicon
    Watson, T. F.
    Philips, S. G. J.
    Kawakami, E.
    Ward, D. R.
    Scarlino, P.
    Veldhorst, M.
    Savage, D. E.
    Lagally, M. G.
    Friesen, Mark
    Coppersmith, S. N.
    Eriksson, M. A.
    Vandersypen, L. M. K.
    NATURE, 2018, 555 (7698) : 633 - +
  • [10] Realization of a programmable two-qubit quantum processor
    Hanneke, D.
    Home, J. P.
    Jost, J. D.
    Amini, J. M.
    Leibfried, D.
    Wineland, D. J.
    NATURE PHYSICS, 2010, 6 (01) : 13 - 16