ON THE CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR INTEGRAL-ALGEBRAIC EQUATIONS OF INDEX

被引:0
|
作者
Gao, Hecong [1 ]
Liang, Hui [1 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 05期
基金
中国国家自然科学基金;
关键词
Integral-algebraic equation; index-1; discontinuous Galerkin method; convergence; superconvergence; NUMERICAL-SOLUTION;
D O I
10.3934/dcdsb.2023168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The integral-algebraic equation (IAE) of index 1 is a mixed system of first-kind and second-kind Volterra integral equations (VIEs). In this paper, the discontinuous Galerkin (DG) method is proposed to solve the index-1 IAE, and the optimal global convergence order is obtained. The iterated DG method is introduced in order to improve the numerical accuracy, and the global superconvergence of the iterated DG solution is derived. However, due to the lack of the local superconvergence of the DG residual for first-kind VIEs, there is no local superconvergence for the mixed IAE system of first-kind and secondkind VIEs, and the numerical experiments also verify this. Some numerical experiments are given to illustrate the obtained theoretical results.
引用
收藏
页码:2092 / 2109
页数:18
相关论文
共 50 条
  • [41] Convergence and superconvergence of staggered discontinuous Galerkin methods for the three-dimensional Maxwell's equations on Cartesian grids
    Chung, Eric T.
    Ciarlet, Patrick, Jr.
    Yu, Tang Fei
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 235 : 14 - 31
  • [42] Survey on discontinuous Galerkin methods for Hamilton-Jacobi equations
    Shu, Chi-Wang
    RECENT ADVANCES IN SCIENTIFIC COMPUTING AND APPLICATIONS, 2013, 586 : 323 - 330
  • [43] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    Sandra May
    Bulletin of the Brazilian Mathematical Society, New Series, 2016, 47 : 561 - 573
  • [44] Spacetime discontinuous Galerkin methods for convection-diffusion equations
    May, Sandra
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2016, 47 (02): : 561 - 573
  • [45] Discontinuous Galerkin methods for Maxwell's equations in the time domain
    Cohen, Gary
    Ferrieres, Xavier
    Pernet, Sebastien
    COMPTES RENDUS PHYSIQUE, 2006, 7 (05) : 494 - 500
  • [46] Discontinuous Galerkin Methods for Isogeometric Analysis for Elliptic Equations on Surfaces
    Zhang F.
    Xu Y.
    Chen F.
    Communications in Mathematics and Statistics, 2014, 2 (3-4) : 431 - 461
  • [47] Adaptive iterative regularization schemes for two-dimensional integral-algebraic systems
    Farahani, Mahdi S.
    Hadizadeh, Mahmoud
    Bulatov, Mikhail, V
    Chistyakova, Elena
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (18) : 6635 - 6647
  • [48] TEMPORAL CONVERGENCE OF A LOCALLY IMPLICIT DISCONTINUOUS GALERKIN METHOD FOR MAXWELL'S EQUATIONS
    Moya, Ludovic
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (05): : 1225 - 1246
  • [49] CONVERGENCE OF A DISCONTINUOUS GALERKIN MULTISCALE METHOD
    Elfverson, Daniel
    Georgoulis, Emmanuil H.
    Malqvist, Axel
    Peterseim, Daniel
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2013, 51 (06) : 3351 - 3372
  • [50] Discontinuous Galerkin Method for Volume Integral Equations Using HSWG Basis Functions
    Liu, Rui
    Xiao, Gaobiao
    Hu, Yuyang
    2020 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT 2020 ONLINE), 2020,