ON THE CONVERGENCE OF DISCONTINUOUS GALERKIN METHODS FOR INTEGRAL-ALGEBRAIC EQUATIONS OF INDEX

被引:0
|
作者
Gao, Hecong [1 ]
Liang, Hui [1 ]
机构
[1] Harbin Inst Technol, Sch Sci, Shenzhen 518055, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2024年 / 29卷 / 05期
基金
中国国家自然科学基金;
关键词
Integral-algebraic equation; index-1; discontinuous Galerkin method; convergence; superconvergence; NUMERICAL-SOLUTION;
D O I
10.3934/dcdsb.2023168
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
. The integral-algebraic equation (IAE) of index 1 is a mixed system of first-kind and second-kind Volterra integral equations (VIEs). In this paper, the discontinuous Galerkin (DG) method is proposed to solve the index-1 IAE, and the optimal global convergence order is obtained. The iterated DG method is introduced in order to improve the numerical accuracy, and the global superconvergence of the iterated DG solution is derived. However, due to the lack of the local superconvergence of the DG residual for first-kind VIEs, there is no local superconvergence for the mixed IAE system of first-kind and secondkind VIEs, and the numerical experiments also verify this. Some numerical experiments are given to illustrate the obtained theoretical results.
引用
收藏
页码:2092 / 2109
页数:18
相关论文
共 50 条
  • [31] ON THE CONVERGENCE ANALYSIS OF THE SPLINE COLLOCATION METHOD FOR SYSTEM OF INTEGRAL ALGEBRAIC EQUATIONS OF INDEX-2
    Ghoreishi, F.
    Hadizadeh, M.
    Pishbin, S.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2012, 9 (04)
  • [32] Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order
    C. Siefert
    R. Tuminaro
    A. Gerstenberger
    G. Scovazzi
    S. S. Collis
    Computational Geosciences, 2014, 18 : 597 - 612
  • [33] Algebraic multigrid techniques for discontinuous Galerkin methods with varying polynomial order
    Siefert, C.
    Tuminaro, R.
    Gerstenberger, A.
    Scovazzi, G.
    Collis, S. S.
    COMPUTATIONAL GEOSCIENCES, 2014, 18 (05) : 597 - 612
  • [34] Convergence of block boundary value methods for solving delay differential algebraic equations with index-1 and index-2
    Zhao, Jingjun
    Jiang, Xingzhou
    Xu, Yang
    APPLIED MATHEMATICS AND COMPUTATION, 2021, 399
  • [35] Construction of implicit multistep methods for solving integral algebraic equations
    Bulatov, M., V
    Hadizadeh, M.
    Chistyakova, E., V
    VESTNIK SANKT-PETERBURGSKOGO UNIVERSITETA SERIYA 10 PRIKLADNAYA MATEMATIKA INFORMATIKA PROTSESSY UPRAVLENIYA, 2019, 15 (03): : 310 - 322
  • [36] Convergence and asymptotic stability of Galerkin methods for linear parabolic equations with delays
    Liang, Hui
    APPLIED MATHEMATICS AND COMPUTATION, 2015, 264 : 160 - 178
  • [37] Discontinuous Galerkin Methods for Nonlinear Parabolic Delay-Equations of Nonmonotone Type
    Devi, Raksha
    Pandey, Dwijendra Narain
    JOURNAL OF SCIENTIFIC COMPUTING, 2024, 101 (02)
  • [38] Convergence analysis of Galerkin and multi-Galerkin methods for linear integral equations on half-line using Laguerre polynomials
    Nahid, Nilofar
    Nelakanti, Gnaneshwar
    COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
  • [39] Convergence of Galerkin Solutions for Linear Differential Algebraic Equations in Hilbert Spaces
    Matthes, Michael
    Tischendorf, Caren
    NUMERICAL ANALYSIS AND APPLIED MATHEMATICS, VOLS I-III, 2010, 1281 : 247 - 250
  • [40] Local discontinuous Galerkin methods for fractional ordinary differential equations
    Weihua Deng
    Jan S. Hesthaven
    BIT Numerical Mathematics, 2015, 55 : 967 - 985