Niche comparison and range shifts for two Kappaphycus species in the Indo-Pacific Ocean under climate change

被引:1
作者
Du, Yu-Qun [1 ,2 ,3 ]
Jueterbock, Alexander [4 ]
Firdaus, Muhammad [5 ]
Hurtado, Anicia Q. [6 ]
Duan, Delin [1 ,2 ]
机构
[1] Chinese Acad Sci, Inst Oceanol, Shandong Prov Key Lab Expt Marine Biol, Key Lab Breeding Biotechnol & Sustainable Aquacult, Qingdao 266071, Peoples R China
[2] Natl Lab Marine Sci & Technol, Funct Lab Marine Biol & Biotechnol, Qingdao 266071, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Nord Univ, Fac Biosci & Aquaculture, N-8049 Bodo, Norway
[5] Natl Res & Innovat Agcy BRIN, Res Ctr Marine & Land Bioind, Lombok Utara 83352, Nusa Tenggara B, Indonesia
[6] Integrated Serv Dev Aquaculture & Fisheries ISDA I, 287 MacArthur Highway Tabuc Suba, Iloilo 5000, Philippines
关键词
Climate change; Ecological niche modeling; Eucheumatoids; Niche overlap; Range dynamics; KAPPAPHYCUS-ALVAREZII; ENVELOPE MODELS; CONSERVATISM; RHODOPHYTA; DISTRIBUTIONS; GIGARTINALES; SOLIERIACEAE; ECOLOGY; EVOLUTION; ABILITY;
D O I
10.1016/j.ecolind.2023.110900
中图分类号
X176 [生物多样性保护];
学科分类号
090705 ;
摘要
Nowadays, eucheumatoids lead the rankings in globally cultivated seaweed production, including the seaweeds Kappaphycus alvarezii and Kappaphycus striatus. Eucheumatoids have declined in biomass over recent years, and climate change is regarded as one of the important factors. Thus, it is urgent to investigate the range dynamics of Kappaphycus under climate change. Considering its high practical relevance for conserving biodiversity, the niche conservatism hypothesis was tested between the two species through ecological niche modeling (ENM), ordination, and hypervolume approach which quantify the extent of niche overlap. In this study, we sifted the best performing algorithm Maxent and tuned parameters for fitting the distribution of both Kappaphycus species, compared their geographical distribution patterns, and predicted their range dynamics under climate change. All three methodological approaches indicated significant niche differences in both geographical and environmental space between the two Kappaphycus species. Our models predicted that range shifts mainly induced by rising sea surface temperature are likely to differ between two Kappaphycus species, with K. striatus suffering much range contraction (359,448 km2 in 2100s RCP8.5). By the year 2100, both Kappaphycus species are forecast to lose suitable habitats along most of the coastline of Southeast Asia under the RCP8.5 scenario. K. alvarezii is predicted to expand its distributions (96,429 km2) under the RCP2.6 scenario by the year 2100, suggesting resilience to mild global warming. Our study enhances the understanding of Kappaphycus aquaculture, and is conducive to the sustainable development of tropical seaweed by stressing the importance of conservation and investigation under climate change.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] The role of climate change and niche shifts in divergent range dynamics of a sister-species pair
    Summers, Jeremy
    Lukas, Dieter
    Logan, Corina J.
    Chen, Nancy
    PEER COMMUNITY JOURNAL, 2023, 3
  • [2] Comparing niche- and process-based models to reduce prediction uncertainty in species range shifts under climate change
    Morin, Xavier
    Thuiller, Wilfried
    ECOLOGY, 2009, 90 (05) : 1301 - 1313
  • [3] Potential pollination maintenance by an exotic allodapine bee under climate change scenarios in the Indo-Pacific region
    Silva, D. P.
    Groom, S. V. C.
    da Silva, C. R. B.
    Stevens, M. I.
    Schwarz, M. P.
    JOURNAL OF APPLIED ENTOMOLOGY, 2017, 141 (1-2) : 122 - 132
  • [4] Competition mediates understorey species range shifts under climate change
    Sanczuk, Pieter
    De Lombaerde, Emiel
    Haesen, Stef
    Van Meerbeek, Koenraad
    Luoto, Miska
    Van der Veken, Bas
    Van Beek, Eric
    Hermy, Martin
    Verheyen, Kris
    Vangansbeke, Pieter
    De Frenne, Pieter
    JOURNAL OF ECOLOGY, 2022, 110 (08) : 1813 - 1825
  • [5] Choice of threshold alters projections of species range shifts under climate change
    Nenzen, H. K.
    Araujo, M. B.
    ECOLOGICAL MODELLING, 2011, 222 (18) : 3346 - 3354
  • [6] Range and niche shifts in response to past climate change in the desert horned lizard Phrynosoma platyrhinos
    Jezkova, Tereza
    Jaeger, Jef R.
    Olah-Hemmings, Viktoria
    Jones, K. Bruce
    Lara-Resendiz, Rafael A.
    Mulcahy, Daniel G.
    Riddle, Brett R.
    ECOGRAPHY, 2016, 39 (05) : 437 - 448
  • [8] The influence of species interactions on geographic range change under climate change
    Hellmann, Jessica J.
    Prior, Kirsten M.
    Pelini, Shannon L.
    YEAR IN ECOLOGY AND CONSERVATION BIOLOGY, 2012, 1249 : 18 - 28
  • [9] The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change
    Valladares, Fernando
    Matesanz, Silvia
    Guilhaumon, Francois
    Araujo, Miguel B.
    Balaguer, Luis
    Benito-Garzon, Marta
    Cornwell, Will
    Gianoli, Ernesto
    van Kleunen, Mark
    Naya, Daniel E.
    Nicotra, Adrienne B.
    Poorter, Hendrik
    Zavala, Miguel A.
    ECOLOGY LETTERS, 2014, 17 (11) : 1351 - 1364
  • [10] The global ecological niche of lumpfish (Cyclopterus lumpus) and predicted range shifts under climate change
    Rodriguez-Rey, Marta
    Whittaker, Benjamin
    HYDROBIOLOGIA, 2023, 850 (09) : 2089 - 2100