Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Exploring Ecological Quality and Its Driving Factors in Diqing Prefecture, China, Based on Annual Remote Sensing Ecological Index and Multi-Source Data
    Wang, Chen
    Sheng, Qianqian
    Zhu, Zunling
    LAND, 2024, 13 (09)
  • [42] ESTIMATION OF VEGETATION NET PRIMARY PRODUCTIVITY OF BEIJING YEYAHU WETLAND BASED ON REMOTE SENSING
    Su Yao-ming
    Zhu Lin
    Gong Hui-li
    Zhao Wen-ji
    Jing Ling-ling
    2009 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-5, 2009, : 1671 - +
  • [43] Assessing productivity of vegetation in the Amazon using remote sensing and modelling
    Luus, Kristina A.
    Kelly, Richard E. J.
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2008, 32 (04): : 363 - 377
  • [44] Estimating seasonal water budgets in global lakes by using multi-source remote sensing measurements
    Chen, Tan
    Song, Chunqiao
    Ke, Linghong
    Wang, Jida
    Liu, Kai
    Wu, Qianhan
    JOURNAL OF HYDROLOGY, 2021, 593
  • [45] Inversion of Soil Moisture on Farmland Areas Based on SSA-CNN Using Multi-Source Remote Sensing Data
    Wang, Ran
    Zhao, Jianhui
    Yang, Huijin
    Li, Ning
    REMOTE SENSING, 2023, 15 (10)
  • [46] Research on cropping intensity mapping of the Huai River Basin (China) based on multi-source remote sensing data fusion
    Wang, Yihang
    Fan, Lin
    Tao, Ranting
    Zhang, Letao
    Zhao, Wei
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2022, 29 (09) : 12661 - 12679
  • [47] A Soil Moisture Spatial and Temporal Resolution Improving Algorithm Based on Multi-Source Remote Sensing Data and GRNN Model
    Cui, Yaokui
    Chen, Xi
    Xiong, Wentao
    He, Lian
    Lv, Feng
    Fan, Wenjie
    Luo, Zengliang
    Hong, Yang
    REMOTE SENSING, 2020, 12 (03)
  • [48] Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data
    Ariken, Muhadaisi
    Zhang, Fei
    Liu, Kang
    Fang, Chuangling
    Kung, Hsiang-Te
    ECOLOGICAL INDICATORS, 2020, 114
  • [49] Continuous fusion algorithm analysis for multi-source remote sensing soil moisture data based on cumulative distribution fusion
    Yao X.
    Yu J.
    Sun W.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2019, 35 (01): : 131 - 137
  • [50] Satellite remote sensing of vegetation phenology: Progress, challenges, and opportunities
    Gong, Zheng
    Ge, Wenyan
    Guo, Jiaqi
    Liu, Jincheng
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2024, 217 : 149 - 164