Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Remote sensing monitoring of total suspended solids concentration in Jiaozhou Bay based on multi-source data
    Zhang, Xiang
    Huang, Jue
    Chen, Junjie
    Zhao, Yongfang
    ECOLOGICAL INDICATORS, 2023, 154
  • [22] Drought Monitoring of Winter Wheat in Henan Province, China Based on Multi-Source Remote Sensing Data
    Tian, Guizhi
    Zhu, Liming
    AGRONOMY-BASEL, 2024, 14 (04):
  • [23] Construction of a drought monitoring model using deep learning based on multi-source remote sensing data
    Shen, Runping
    Huang, Anqi
    Li, Bolun
    Guo, Jia
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2019, 79 : 48 - 57
  • [24] A novel agricultural drought index based on multi-source remote sensing data and interpretable machine learning
    Chen, Hao
    Yang, Ni
    Song, Xuanhua
    Lu, Chunhua
    Lu, Menglan
    Chen, Tan
    Deng, Shulin
    AGRICULTURAL WATER MANAGEMENT, 2025, 308
  • [25] MONITORING SURFACE WATER CONTENT AND BIOGEOCHEMICAL RESPONSES IN THE AREA SURROUNDING RIVER MOUTHS USING MULTI-SOURCE SATELLITE REMOTE SENSING
    Kim, Youngwook
    Park, Ji-Hyung
    Du, Jinyang
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 3742 - 3744
  • [26] Multi-source remote sensing data reveals complex topsoil organic carbon dynamics in coastal wetlands
    Villoslada, Miguel
    Sipelgas, Liis
    Ward, Raymond D.
    Reintam, Endla
    Astover, Alar
    Kumpula, Timo
    Sepp, Kalev
    ECOLOGICAL INDICATORS, 2022, 143
  • [27] Quantitative Assessment of Factors Influencing the Spatiotemporal Variation in Carbon Dioxide Fluxes Simulated by Multi-Source Remote Sensing Data in Tropical Vegetation
    Xu, Ruize
    Zhang, Jiahua
    Wang, Jingwen
    Yao, Fengmei
    Zhang, Sha
    REMOTE SENSING, 2023, 15 (24)
  • [28] Spatial Scaling of Forest Aboveground Biomass Using Multi-Source Remote Sensing Data
    Wang, Xinchuang
    Jiao, Haiming
    IEEE ACCESS, 2020, 8 : 178870 - 178885
  • [29] Spatiotemporal fusion of multi-source remote sensing data for estimating aboveground biomass of grassland
    Zhou, Yajun
    Liu, Tingxi
    Batelaan, Okke
    Duan, Limin
    Wang, Yixuan
    Li, Xia
    Li, Mingyang
    ECOLOGICAL INDICATORS, 2023, 146
  • [30] Regional Scale Inversion of Chlorophyll Content of Dendrocalamus giganteus by Multi-Source Remote Sensing
    Xia, Cuifen
    Zhou, Wenwu
    Shu, Qingtai
    Wu, Zaikun
    Xu, Li
    Yang, Huanfen
    Qin, Zhen
    Wang, Mingxing
    Duan, Dandan
    FORESTS, 2024, 15 (07):