Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:3
|
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Multi-source remote sensing data shows a significant increase in vegetation on the Tibetan Plateau since 2000
    Yang, Junliu
    Xin, Zhongbao
    Huang, Yanzhang
    Liang, Xiaoyu
    PROGRESS IN PHYSICAL GEOGRAPHY-EARTH AND ENVIRONMENT, 2023, 47 (04): : 597 - 624
  • [2] Estimating the cooling effect magnitude of urban vegetation in different climate zones using multi-source remote sensing
    Su, Yongxian
    Wu, Jianping
    Zhang, Chaoqun
    Wu, Xiong
    Li, Qian
    Liu, Liyang
    Bi, Chongyuan
    Zhang, Hongou
    Lafortezza, Raffaele
    Chen, Xiuzhi
    URBAN CLIMATE, 2022, 43
  • [3] Response of ecosystem gross primary productivity to drought in northern China based on multi-source remote sensing data
    Zhang, Ting
    Zhou, Junzhi
    Yu, Ping
    Li, Jianzhu
    Kang, Yanfu
    Zhang, Bo
    JOURNAL OF HYDROLOGY, 2023, 616
  • [4] Hierarchical Geographic Object-Based Vegetation Type Extraction Based on Multi-Source Remote Sensing Data
    Mao, Xuegang
    Deng, Yueqing
    Zhu, Liang
    Yao, Yao
    FORESTS, 2020, 11 (12): : 1 - 19
  • [5] Assessing variability in post-fire forest structure along gradients of productivity in the Canadian boreal using multi-source remote sensing
    Bolton, Douglas K.
    Coops, Nicholas C.
    Hermosilla, Txomin
    Wulder, Michael A.
    White, Joanne C.
    JOURNAL OF BIOGEOGRAPHY, 2017, 44 (06) : 1294 - 1305
  • [6] An Object-Based Approach to Map Young Forest and Shrubland Vegetation Based on Multi-Source Remote Sensing Data
    Rittenhouse, Chadwick D.
    Berlin, Elana H.
    Mikle, Nathaniel
    Qiu, Shi
    Riordan, Dustin
    Zhu, Zhe
    REMOTE SENSING, 2022, 14 (05)
  • [7] Integrating multi-source remote sensing data for mapping boreal forest canopy height and species in interior Alaska in support of radar modeling
    Zhao, Yu-Huan
    Bakian-Dogaheh, Kazem
    Whitcomb, Jane
    Chen, Richard H.
    Yi, Yonghong
    Kimball, John S.
    Moghaddam, Mahta
    ENVIRONMENTAL RESEARCH LETTERS, 2024, 19 (07):
  • [8] Classification and Monitoring of Salt Marsh Vegetation in the Yellow River Delta Based on Multi-Source Remote Sensing Data Fusion
    Xu, Ran
    Fan, Yanguo
    Fan, Bowen
    Feng, Guangyue
    Li, Ruotong
    SENSORS, 2025, 25 (02)
  • [9] Predicting catchment-scale methane fluxes with multi-source remote sensing
    Rasanen, Aleksi
    Manninen, Terhikki
    Korkiakoski, Mika
    Lohila, Annalea
    Virtanen, Tarmo
    LANDSCAPE ECOLOGY, 2021, 36 (04) : 1177 - 1195
  • [10] Spatiotemporal Variability of Gross Primary Productivity in Türkiye: A Multi-Source and Multi-Method Assessment
    Basakin, Eyyup Ensar
    Stoy, Paul C.
    Demirel, Mehmet Cuneyd
    Pham, Quoc Bao
    REMOTE SENSING, 2024, 16 (11)