Multi-Source Remote Sensing Based Modeling of Vegetation Productivity in the Boreal: Issues & Opportunities

被引:6
作者
Melser, Ramon [1 ]
Coops, Nicholas C. [1 ]
Wulder, Michael A. [2 ]
Derksen, Chris [3 ]
机构
[1] Univ British Columbia, Dept Forest Resource Management, Vancouver, BC V6T 1Z4, Canada
[2] Canadian Forest Serv, Nat Resources Canada, Victoria, BC V8Z 1M5, Canada
[3] Environm & Climate Change Canada, Climate Res Div, Toronto, ON M3H 5T4, Canada
关键词
GROSS PRIMARY PRODUCTIVITY; NET PRIMARY PRODUCTIVITY; CLIMATE-CHANGE; SOIL-MOISTURE; CARBON-CYCLE; FOREST; IMPACTS; CANADA; LANDSCAPE; DYNAMICS;
D O I
10.1080/07038992.2023.2256895
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Understanding the processes driving terrestrial vegetation productivity dynamics in boreal ecosystems is critical for accurate assessments of carbon dynamics. Monitoring these dynamics typically requires a fusion of broad-scale remote sensing observations, climate information and other geospatial data inputs, which often have unknown errors, are difficult to obtain, or limit spatial and temporal resolutions of productivity estimates. The past decade has seen notable advances in technologies and the diversity of observed wavelengths from remote sensing instruments, offering new insights on vegetation carbon dynamics. In this communication, we review key current approaches for modeling terrestrial vegetation productivity, followed by a discussion on new remote sensing instruments and derived products including Sentinel-3 Land Surface Temperature, freeze & thaw state from the Soil Moisture & Ocean Salinity (SMOS) mission, and soil moisture from the Soil Moisture Active Passive (SMAP) mission. We outline how these products can improve the spatial detail and temporal representation of boreal productivity estimates driven entirely by a fusion of remote sensing observations. We conclude with a demonstration of how these different elements can be integrated across key land cover types in the Hudson plains, an extensive wetland-dominated region of the Canadian boreal, and provide recommendations for future model development. Il est essentiel de comprendre les processus regissant la dynamique de la productivite de la vegetation terrestre des ecosystemes boreaux pour pouvoir evaluer avec precision les flux de carbone. Le suivi de cette dynamique necessite la fusion d'observations de teledetection a grande echelle, d'informations climatiques, et d'autres donnees geospatiales, lesquelles comportent des erreurs inconnues, sont difficiles a obtenir, et limitent les resolutions spatiales et temporelles des estimations de la productivite. Au cours de la derniere decennie, des progres technologiques notables ont diversifie les longueurs d'onde observees par les instruments de teledetection, ce qui a permis de mieux comprendre la dynamique du carbone liee a la vegetation. Dans cette communication, nous passons en revue les principales approches pour la modelisation de la productivite de la vegetation terrestre, suivies d'une discussion sur les nouveaux instruments de teledetection et leurs produits derives, notamment la temperature de la surface terrestre extraite de Sentinel-3, l'etat de gel ou de degel du sol derive de la mission SMOS, et l'humidite du sol derivee de la mission SMAP. Nous decrivons comment ces produits peuvent ameliorer le detail spatial et la representation temporelle des estimations de la productivite boreale entierement basees sur une fusion d'observations de teledetection. Nous concluons par une demonstration de la facon dont ces differents elements peuvent etre integres dans les principaux types de couverture terrestre des plaines hudsoniennes, une vaste region de la foret boreale canadienne dominee par des zones humides, et nous formulons des recommandations pour de futures ameliorations du modele.
引用
收藏
页数:22
相关论文
共 113 条
[1]  
Abraham K.F., 2011, Technical Ecozone Report
[2]   Carbon budgets for soil and plants respond to long-term warming in an Alaskan boreal forest [J].
Alster, Charlotte J. ;
Allison, Steven D. ;
Treseder, Kathleen K. .
BIOGEOCHEMISTRY, 2020, 150 (03) :345-353
[3]   High-fidelity national carbon mapping for resource management and REDD+ [J].
Asner G.P. ;
Mascaro J. ;
Anderson C. ;
Knapp D.E. ;
Martin R.E. ;
Kennedy-Bowdoin T. ;
van Breugel M. ;
Davies S. ;
Hall J.S. ;
Muller-Landau H.C. ;
Potvin C. ;
Sousa W. ;
Wright J. ;
Bermingham E. .
Carbon Balance and Management, 8 (1)
[4]  
Baston D, 2022, exactextractr: Fast extraction from raster datasets using polygons
[5]   Satellite observations of high northern latitude vegetation productivity changes between 1982 and 2008: ecological variability and regional differences [J].
Beck, Pieter S. A. ;
Goetz, Scott J. .
ENVIRONMENTAL RESEARCH LETTERS, 2011, 6 (04)
[6]   Permafrost is warming at a global scale [J].
Biskaborn, Boris K. ;
Smith, Sharon L. ;
Noetzli, Jeannette ;
Matthes, Heidrun ;
Vieira, Goncalo ;
Streletskiy, Dmitry A. ;
Schoeneich, Philippe ;
Romanovsky, Vladimir E. ;
Lewkowicz, Antoni G. ;
Abramov, Andrey ;
Allard, Michel ;
Boike, Julia ;
Cable, William L. ;
Christiansen, Hanne H. ;
Delaloye, Reynald ;
Diekmann, Bernhard ;
Drozdov, Dmitry ;
Etzelmueller, Bernd ;
Grosse, Guido ;
Guglielmin, Mauro ;
Ingeman-Nielsen, Thomas ;
Isaksen, Ketil ;
Ishikawa, Mamoru ;
Johansson, Margareta ;
Johannsson, Halldor ;
Joo, Anseok ;
Kaverin, Dmitry ;
Kholodov, Alexander ;
Konstantinov, Pavel ;
Kroeger, Tim ;
Lambiel, Christophe ;
Lanckman, Jean-Pierre ;
Luo, Dongliang ;
Malkova, Galina ;
Meiklejohn, Ian ;
Moskalenko, Natalia ;
Oliva, Marc ;
Phillips, Marcia ;
Ramos, Miguel ;
Sannel, A. Britta K. ;
Sergeev, Dmitrii ;
Seybold, Cathy ;
Skryabin, Pavel ;
Vasiliev, Alexander ;
Wu, Qingbai ;
Yoshikawa, Kenji ;
Zheleznyak, Mikhail ;
Lantuit, Hugues .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   ENVIRONMENTAL-FACTORS AND ECOLOGICAL PROCESSES IN BOREAL FORESTS [J].
BONAN, GB ;
SHUGART, HH .
ANNUAL REVIEW OF ECOLOGY AND SYSTEMATICS, 1989, 20 :1-28
[8]   Proxy Indicators for Mapping the End of the Vegetation Active Period in Boreal Forests Inferred from Satellite-Observed Soil Freeze and ERA-Interim Reanalysis Air Temperature [J].
Bottcher, Kristin ;
Rautiainen, Kimmo ;
Aurela, Mika ;
Kolari, Pasi ;
Makela, Annikki ;
Arslan, Ali N. ;
Black, T. Andrew ;
Koponen, Sampsa .
PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2018, 86 (3-4) :169-185
[9]   An introduction to Canada's boreal zone: ecosystem processes, health, sustainability, and environmental issues INTRODUCTION [J].
Brandt, J. P. ;
Flannigan, M. D. ;
Maynard, D. G. ;
Thompson, I. D. ;
Volney, W. J. A. .
ENVIRONMENTAL REVIEWS, 2013, 21 (04) :207-226
[10]   Trends in recent temperature and radial tree growth spanning 2000 years across northwest Eurasia [J].
Briffa, Keith R. ;
Shishov, Vladimir V. ;
Melvin, Thomas M. ;
Vaganov, Eugene A. ;
Grudd, Haken ;
Hantemirov, Rashit M. ;
Eronen, Matti ;
Naurzbaev, Muktar M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2008, 363 (1501) :2271-2284