Robust and efficient Fe/Mn bimetal doped Pr4/3Ba2/3Co2/3Fe2/3Mn2/3O5+δ double perovskite catalysts for direct CO2 electrolysis

被引:9
作者
Bae, Kyung Taek [1 ]
Jeong, Incheol [1 ]
Akromjon, Akhmadjonov [1 ]
Im, Ha-Ni [1 ]
Lee, Kang Taek [1 ,2 ,3 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mech Engn, Daejeon 34141, South Korea
[2] Korea Adv Inst Sci & Technol, Inst NanoCentury, Daejeon 34141, South Korea
[3] Korea Adv Inst Sci & Technol, Grad Sch Green Growth & Sustainabil, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
Solid oxide electrochemical cells; Fuel electrodes; Double perovskite; CO 2 reduction reaction; Bimetal doping; ELECTROCHEMICAL PERFORMANCE; OXYGEN-ELECTRODE; TEMPERATURE; NANOPARTICLES; CATHODE; CELLS; EXCELLENT; KINETICS;
D O I
10.1016/j.cej.2023.145015
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Solid oxide electrochemical cells (SOCs) hold great promise as highly efficient energy conversion devices for the electrochemical reduction of CO2 into valuable fuels. However, the practical application of SOCs for CO2 reduction is significantly hampered by the sluggish reaction kinetics and poor stability of the fuel electrodes. Here, we report on a novel Pr4/3Ba2/3Co2/3Fe2/3Mn2/3O5+& delta; (PBCFM) with a double perovskite structure, which is highly active and durable for electrochemical reactions of H2 oxidation and CO2 reduction. Co-doping of Fe and Mn into the B-site of PrBaCo2O5+& delta; improved its structural stability, thereby preventing Ba segregation and carbonate formation under pure CO2 atmospheres and enabling the exsolution of CoFe alloy without phase decomposition. The SOC with the PBCFM electrode exhibited superior performance of 2.04 W cm-2 in peak power density in the fuel cell mode with H2 and a current density of 3.76 A cm-2 at 1.5 V in the CO2 electrolysis cell mode at 850 degrees C. Furthermore, the PBCFM electrode exhibited excellent long-term durability without any carbon coking or degradation. These results demonstrate the feasibility of the novel PBCFM as a robust and efficient catalyst for direct CO2 electrolysis.
引用
收藏
页数:9
相关论文
共 56 条
[21]   Cation Size Mismatch and Charge Interactions Drive Dopant Segregation at the Surfaces of Manganite Perovskites [J].
Lee, Wonyoung ;
Han, Jeong Woo ;
Chen, Yan ;
Cai, Zhuhua ;
Yildiz, Bilge .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (21) :7909-7925
[22]   Methanol oxidation on LaBO3 (B = Co, Mn, Fe) perovskite-type catalysts prepared by reactive grinding [J].
Levasseur, B. ;
Kaliaguine, S. .
APPLIED CATALYSIS A-GENERAL, 2008, 343 (1-2) :29-38
[23]   Perovskite Oxyfluoride Electrode Enabling Direct Electrolyzing Carbon Dioxide with Excellent Electrochemical Performances [J].
Li, Yihang ;
Li, Yong ;
Wan, Yanhong ;
Xie, Yun ;
Zhu, Junfa ;
Pan, Haibin ;
Zheng, Xusheng ;
Xia, Changrong .
ADVANCED ENERGY MATERIALS, 2019, 9 (03)
[24]   A novel fuel electrode enabling direct CO2 electrolysis with excellent and stable cell performance [J].
Li, Yihang ;
Hu, Bobing ;
Xia, Changrong ;
Xu, Wayne Q. ;
Lemmon, John P. ;
Chen, Fanglin .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (39) :20833-20842
[25]   Promoting exsolution of RuFe alloy nanoparticles on Sr2Fe1.4Ru0.1Mo0.5O6-δ via repeated redox manipulations for CO2 electrolysis [J].
Lv, Houfu ;
Lin, Le ;
Zhang, Xiaomin ;
Li, Rongtan ;
Song, Yuefeng ;
Matsumoto, Hiroaki ;
Ta, Na ;
Zeng, Chaobin ;
Fu, Qiang ;
Wang, Guoxiong ;
Bao, Xinhe .
NATURE COMMUNICATIONS, 2021, 12 (01)
[26]   In Situ Investigation of Reversible Exsolution/Dissolution of CoFe Alloy Nanoparticles in a Co-Doped Sr2Fe1.5Mo0.5O6-δ Cathode for CO2 Electrolysis [J].
Lv, Houfu ;
Lin, Le ;
Zhang, Xiaomin ;
Song, Yuefeng ;
Matsumoto, Hiroaki ;
Zeng, Chaobin ;
Ta, Na ;
Liu, Wei ;
Gao, Dunfeng ;
Wang, Guoxiong ;
Bao, Xinhe .
ADVANCED MATERIALS, 2020, 32 (06)
[27]   In situ exsolved FeNi3 nanoparticles on nickel doped Sr2Fe1.5Mo0.5O6- perovskite for efficient electrochemical CO2 reduction reaction [J].
Lv, Houfu ;
Lin, Le ;
Zhang, Xiaomin ;
Gao, Dunfeng ;
Song, Yuefeng ;
Zhou, Yingjie ;
Liu, Qingxue ;
Wang, Guoxiong ;
Bao, Xinhe .
JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (19) :11967-11975
[28]  
MONKHORST HJ, 1976, PHYS REV B, V13, P5188, DOI [10.1103/PhysRevB.13.5188, 10.1103/PhysRevB.16.1746]
[29]   Switching on electrocatalytic activity in solid oxide cells [J].
Myung, Jae-ha ;
Neagu, Dragos ;
Miller, David N. ;
Irvine, John T. S. .
NATURE, 2016, 537 (7621) :528-+
[30]  
Neagu D, 2013, NAT CHEM, V5, P916, DOI [10.1038/nchem.1773, 10.1038/NCHEM.1773]