Closed-loop cathode recycling in solid-state batteries enabled by supramolecular electrolytes

被引:9
作者
Bae, Jiwoong [1 ,5 ]
Zhu, Zhuoying [2 ]
Yan, Jiajun [3 ,6 ]
Kim, Dong-Min [1 ,4 ]
Ko, Youngmin [1 ]
Jain, Anubhav [2 ]
Helms, Brett A. [1 ,3 ]
机构
[1] Lawrence Berkeley Natl Lab, Mol Foundry, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[2] Lawrence Berkeley Natl Lab, Energy Storage & Distributed Resources Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[4] Lawrence Berkeley Natl Lab, Joint Ctr Energy Storage Res, 1 Cyclotron Rd, Berkeley, CA 94720 USA
[5] Hanyang Univ, Dept Mech Engn, Seoul 04763, South Korea
[6] ShanghaiTech Univ, Sch Phys Sci & Technol, Shanghai 201210, Peoples R China
关键词
IONIC-LIQUID; HIGH-ENERGY; FORCE-FIELD; LITHIUM; CHALLENGES; PARAMETERS; WATER;
D O I
10.1126/sciadv.adh9020
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deconstructing solid-state batteries (SSBs) to physically separated cathode and solid-electrolyte particles remains intensive, as does the remanufacturing of cathodes and separators from the recovered materials. To address this challenge, we designed supramolecular organo-ionic (ORION) electrolytes that are viscoelastic solids at battery operating temperatures (-40 degrees to 45 degrees C) yet are viscoelastic liquids above 100 degrees C, which enables both the fabrication of high-quality SSBs and the recycling of their cathodes at end of life. SSBs implementing ORION electrolytes alongside Li metal anodes and either LFP or NMC cathodes were operated for hundreds of cycles at 45 degrees C with less than 20% capacity fade. Using a low-temperature solvent process, we isolated the cathode from the electrolyte and demonstrated that refurbished cells recover 90% of their initial capacity and sustain it for an additional 100 cycles with 84% capacity retention in their second life.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Stability of Electrodeposition at Solid-Solid Interfaces and Implications for Metal Anodes [J].
Ahmad, Zeeshan ;
Viswanathan, Venkatasubramanian .
PHYSICAL REVIEW LETTERS, 2017, 119 (05)
[2]   Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries [J].
Albertus, Paul ;
Babinec, Susan ;
Litzelman, Scott ;
Newman, Aron .
NATURE ENERGY, 2018, 3 (01) :16-21
[3]  
Armand M, 2009, NAT MATER, V8, P621, DOI [10.1038/NMAT2448, 10.1038/nmat2448]
[4]   Perspective Recycling for All Solid-State Lithium-Ion Batteries [J].
Azhari, Luqman ;
Bong, Sungyool ;
Ma, Xiaotu ;
Wang, Yan .
MATTER, 2020, 3 (06) :1845-1861
[5]   A 3D Nanostructured Hydrogel-Framework-Derived High-Performance Composite Polymer Lithium-Ion Electrolyte [J].
Bae, Jiwoong ;
Li, Yutao ;
Zhang, Jun ;
Zhou, Xingyi ;
Zhao, Fei ;
Shi, Ye ;
Goodenough, John B. ;
Yu, Guihua .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2018, 57 (08) :2096-2100
[6]   Diversity-oriented synthesis of polymer membranes with ion solvation cages [J].
Baran, Miranda J. ;
Carrington, Mark E. ;
Sahu, Swagat ;
Baskin, Artem ;
Song, Junhua ;
Baird, Michael A. ;
Han, Kee Sung ;
Mueller, Karl T. ;
Teat, Simon J. ;
Meckler, Stephen M. ;
Fu, Chengyin ;
Prendergast, David ;
Helms, Brett A. .
NATURE, 2021, 592 (7853) :225-+
[7]   Stable solvates in solution of lithium bis(trifluoromethylsulfone)imide in glymes and other aprotic solvents: Phase diagrams, crystallography and Raman spectroscopy [J].
Brouillette, D ;
Irish, DE ;
Taylor, NJ ;
Perron, G ;
Odziemkowski, M ;
Desnoyers, JE .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2002, 4 (24) :6063-6071
[8]   Cationic polymer-in-salt electrolytes for fast metal ion conduction and solid-state battery applications [J].
Chen, Fangfang ;
Wang, Xiaoen ;
Armand, Michel ;
Forsyth, Maria .
NATURE MATERIALS, 2022, 21 (10) :1175-+
[9]   Recycling End-of-Life Electric Vehicle Lithium-Ion Batteries [J].
Chen, Mengyuan ;
Ma, Xiaotu ;
Chen, Bin ;
Arsenault, Renata ;
Karlson, Peter ;
Simon, Nakia ;
Wang, Yan .
JOULE, 2019, 3 (11) :2622-2646
[10]   LigParGen web server: an automatic OPLS-AA parameter generator for organic ligands [J].
Dodda, Leela S. ;
de Vaca, Israel Cabeza ;
Tirado-Rives, Julian ;
Jorgensen, William L. .
NUCLEIC ACIDS RESEARCH, 2017, 45 (W1) :W331-W336