Hyperspectral Image Super-Resolution Meets Deep Learning: A Survey and Perspective

被引:18
|
作者
Wang, Xinya [1 ]
Hu, Qian [1 ]
Cheng, Yingsong [1 ]
Ma, Jiayi [1 ]
机构
[1] Wuhan Univ, Elect Informat Sch, Wuhan 430072, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning; hyperspectral image; image fusion; image super-resolution; survey; MULTISPECTRAL IMAGES; FUSION NETWORK; UNFOLDING NETWORK; EO-1; HYPERION; RESOLUTION; NET; FACTORIZATION; RANGE; MODEL; RIVER;
D O I
10.1109/JAS.2023.123681
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Hyperspectral image super-resolution, which refers to reconstructing the high-resolution hyperspectral image from the input low-resolution observation, aims to improve the spatial resolution of the hyperspectral image, which is beneficial for subsequent applications. The development of deep learning has promoted significant progress in hyperspectral image super-resolution, and the powerful expression capabilities of deep neural networks make the predicted results more reliable. Recently, several latest deep learning technologies have made the hyperspectral image super-resolution method explode. However, a comprehensive review and analysis of the latest deep learning methods from the hyperspectral image super-resolution perspective is absent. To this end, in this survey, we first introduce the concept of hyper-spectral image super-resolution and classify the methods from the perspectives with or without auxiliary information. Then, we review the learning-based methods in three categories, including single hyperspectral image super-resolution, panchromatic-based hyperspectral image super-resolution, and multispectral-based hyperspectral image super-resolution. Subsequently, we summarize the commonly used hyperspectral dataset, and the evaluations for some representative methods in three categories are performed qualitatively and quantitatively. Moreover, we briefly introduce several typical applications of hyperspectral image super-resolution, including ground object classification, urban change detection, and ecosystem monitoring. Finally, we provide the conclusion and challenges in existing learning-based methods, looking forward to potential future research directions.
引用
收藏
页码:1668 / 1691
页数:24
相关论文
共 50 条
  • [21] A Survey of Deep Learning Video Super-Resolution
    Baniya, Arbind Agrahari
    Lee, Tsz-Kwan
    Eklund, Peter W.
    Aryal, Sunil
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (04): : 2655 - 2676
  • [22] Enhanced Deep Image Prior for Unsupervised Hyperspectral Image Super-Resolution
    Li, Jiaxin
    Zheng, Ke
    Gao, Lianru
    Han, Zhu
    Li, Zhi
    Chanussot, Jocelyn
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [23] Advanced deep learning for image super-resolution
    Shamsolmoali, Pourya
    Sadka, Abdul Hamid
    Zhou, Huiyu
    Yang, Wankou
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2020, 82
  • [24] Hyperspectral Image Super-Resolution with RGB Image Super-Resolution as an Auxiliary Task
    Li, Ke
    Dai, Dengxin
    van Gool, Luc
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 4039 - 4048
  • [25] DMSN: A Deep Multistream Network for Hyperspectral Image Super-Resolution
    Li, Sheng
    Su, Yuanchao
    Sun, Xu
    Li, Jiaxin
    Li, Boyan
    Gao, Jianjian
    Feng, Xiaohua
    Jiang, Mengying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2025, 22
  • [26] Model-Guided Deep Hyperspectral Image Super-Resolution
    Dong, Weisheng
    Zhou, Chen
    Wu, Fangfang
    Wu, Jinjian
    Shi, Guangming
    Li, Xin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 (30) : 5754 - 5768
  • [27] Deep RGB-Driven Learning Network for Unsupervised Hyperspectral Image Super-Resolution
    Liu, Zhe
    Han, Xian-Hua
    COMPUTER VISION - ACCV 2022 WORKSHOPS, 2023, 13848 : 226 - 239
  • [28] Spectral super-resolution meets deep learning: Achievements and challenges
    He, Jiang
    Yuan, Qiangqiang
    Li, Jie
    Xiao, Yi
    Liu, Denghong
    Shen, Huanfeng
    Zhang, Liangpei
    INFORMATION FUSION, 2023, 97
  • [29] Deep learning methods in real-time image super-resolution: a survey
    Xiaofang Li
    Yirui Wu
    Wen Zhang
    Ruichao Wang
    Feng Hou
    Journal of Real-Time Image Processing, 2020, 17 : 1885 - 1909
  • [30] Deep learning-based magnetic resonance image super-resolution: a survey
    Ji Z.
    Zou B.
    Kui X.
    Liu J.
    Zhao W.
    Zhu C.
    Dai P.
    Dai Y.
    Neural Computing and Applications, 2024, 36 (21) : 12725 - 12752