Classification of Epileptic and Psychogenic Non-Epileptic Seizures Using Electroencephalography and Electrocardiography

被引:3
作者
Xiong, Wenjuan [1 ]
Nurse, Ewan S. [2 ,3 ]
Lambert, Elisabeth [4 ,5 ]
Cook, Mark J. [3 ,6 ]
Kameneva, Tatiana [7 ,8 ]
机构
[1] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[2] Seer Med, Melbourne, Vic 3000, Australia
[3] Univ Melbourne, St Vincents Hosp, Dept Med, Melbourne, Vic 3010, Australia
[4] Swinburne Univ Technol, Sch Hlth Sci, Hawthorn, Vic 3122, Australia
[5] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Hawthorn, Vic, Australia
[6] Univ Melbourne, Graeme Clark Inst, Melbourne, Vic 3010, Australia
[7] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[8] Univ Melbourne, Dept Biomed Engn, Melbourne, Vic 3010, Australia
关键词
Electroencephalography; Electrocardiography; Random forests; Feature extraction; Australia; Support vector machines; Classification algorithms; Classification; epileptic seizures (ES); electroencephalography (EEG); electrocardiography (ECG); machine learning; psychogenic non-epileptic seizures (PNES); HEART-RATE; PATTERN; EVENTS;
D O I
10.1109/TNSRE.2023.3288138
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients with psychogenic non-epileptic seizures (PNES) may exhibit similar clinical features to patients with epileptic seizures (ES). Misdiagnosis of PNES and ES can lead to inappropriate treatment and significant morbidity. This study investigates the use of machine learning techniques for classification of PNES and ES based on electroencephalography (EEG) and electrocardiography (ECG) data. Video-EEG-ECG of 150 ES events from 16 patients and 96 PNES from 10 patients were analysed. Four preictal periods (time before event onset) in EEG and ECG data were selected for each PNES and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min). Time-domain features were extracted from each preictal data segment in 17 EEG channels and 1 ECG channel. The classification performance using k-nearest neighbour, decision tree, random forest, naive Bayes, and support vector machine classifiers were evaluated. The results showed the highest classification accuracy was 87.83% using the random forest on 15-0 min preictal period of EEG and ECG data. The performance was significantly higher using 15-0 min preictal period data than 30-15 min, 45-30 min, and 60-45 min preictal periods (p<0.001). The classification accuracy was improved from 86.37% to 87.83% by combining ECG data with EEG data (p<0.001). The study provided an automated classification algorithm for PNES and ES events using machine learning techniques on preictal EEG and ECG data.
引用
收藏
页码:2831 / 2838
页数:8
相关论文
共 50 条
  • [21] The association of panic and hyperventilation with psychogenic non-epileptic seizures: A systematic review and meta-analysis
    Indranada, Alaric M.
    Mullen, Saul A.
    Duncan, Roderick
    Berlowitz, David J.
    Kanaan, Richard A. A.
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2018, 59 : 108 - 115
  • [22] Improving classification of epileptic and non-epileptic EEG events by feature selection
    Pippa, Evangelia
    Zacharaki, Evangelia I.
    Mporas, Iosif
    Tsirka, Vasiliki
    Richardson, Mark P.
    Koutroumanidis, Michael
    Megalooikonomou, Vasileios
    NEUROCOMPUTING, 2016, 171 : 576 - 585
  • [23] Psychogenic non-epileptic seizures (PNES) in the context of concurrent epilepsy - making the right diagnosis
    Liampas, Andreas
    Markoula, Sofia
    Zis, Panagiotis
    Reuber, Markus
    ACTA EPILEPTOLOGICA, 2021, 3 (01):
  • [24] Pediatric psychogenic non-epileptic seizures: A retrospective observational cohort study at a quaternary center
    Vasquez, Alejandra
    Hilliker, Daniel R.
    Wirrell, Elaine C.
    EPILEPSY & BEHAVIOR, 2023, 146
  • [25] Clinical Classifications of Children With Psychogenic Non-epileptic Seizure
    Zhang, Li-Ping
    Jia, Yu
    Huang, Hao
    Li, Da-Wei
    Wang, Yu-Ping
    FRONTIERS IN PEDIATRICS, 2021, 8
  • [26] Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures
    Lo Giudice, Michele
    Varone, Giuseppe
    Ieracitano, Cosimo
    Mammone, Nadia
    Tripodi, Giovanbattista Gaspare
    Ferlazzo, Edoardo
    Gasparini, Sara
    Aguglia, Umberto
    Morabito, Francesco Carlo
    ENTROPY, 2022, 24 (01)
  • [27] Abnormal sleep in patients with epileptic or dissociative (non-epileptic) seizures: a polysomnography study
    Popkirov, S.
    Stone, J.
    Derry, C. P.
    EUROPEAN JOURNAL OF NEUROLOGY, 2019, 26 (02) : 255 - 260
  • [28] Psychogenic non-epileptic seizures-Definition, etiology, treatment and prognostic issues: A critical review
    Bodde, N. M. G.
    Brooks, J. L.
    Baker, G. A.
    Boon, P. A. J. M.
    Hendriksen, J. G. M.
    Mulder, O. G.
    Aldenkamp, A. P.
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2009, 18 (08): : 543 - 553
  • [29] Co-morbidities and outcome of childhood psychogenic non-epileptic seizures-An observational study
    Rawat, Vikram Singh
    Dhiman, Vikas
    Sinha, Sanjib
    Sagar, Kommu John Vijay
    Thippeswamy, Harish
    Chaturvedi, Santosh Kumar
    Srinath, Shoba
    Satishchandra, Parthasarthy
    SEIZURE-EUROPEAN JOURNAL OF EPILEPSY, 2015, 25 : 95 - 98
  • [30] MOVEMENT-INDUCED HEART RATE CHANGES IN EPILEPTIC AND NON-EPILEPTIC SEIZURES
    de Oliveira, Gisele R.
    Gondim, Francisco de A. A.
    Hogan, Edward R.
    Rola, Francisco H.
    ARQUIVOS DE NEURO-PSIQUIATRIA, 2009, 67 (3B) : 789 - 791