Classification of Epileptic and Psychogenic Non-Epileptic Seizures Using Electroencephalography and Electrocardiography

被引:3
|
作者
Xiong, Wenjuan [1 ]
Nurse, Ewan S. [2 ,3 ]
Lambert, Elisabeth [4 ,5 ]
Cook, Mark J. [3 ,6 ]
Kameneva, Tatiana [7 ,8 ]
机构
[1] Swinburne Univ Technol, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[2] Seer Med, Melbourne, Vic 3000, Australia
[3] Univ Melbourne, St Vincents Hosp, Dept Med, Melbourne, Vic 3010, Australia
[4] Swinburne Univ Technol, Sch Hlth Sci, Hawthorn, Vic 3122, Australia
[5] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Hawthorn, Vic, Australia
[6] Univ Melbourne, Graeme Clark Inst, Melbourne, Vic 3010, Australia
[7] Swinburne Univ Technol, Iverson Hlth Innovat Res Inst, Sch Sci Comp & Engn Technol, Hawthorn, Vic 3122, Australia
[8] Univ Melbourne, Dept Biomed Engn, Melbourne, Vic 3010, Australia
关键词
Electroencephalography; Electrocardiography; Random forests; Feature extraction; Australia; Support vector machines; Classification algorithms; Classification; epileptic seizures (ES); electroencephalography (EEG); electrocardiography (ECG); machine learning; psychogenic non-epileptic seizures (PNES); HEART-RATE; PATTERN; EVENTS;
D O I
10.1109/TNSRE.2023.3288138
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Patients with psychogenic non-epileptic seizures (PNES) may exhibit similar clinical features to patients with epileptic seizures (ES). Misdiagnosis of PNES and ES can lead to inappropriate treatment and significant morbidity. This study investigates the use of machine learning techniques for classification of PNES and ES based on electroencephalography (EEG) and electrocardiography (ECG) data. Video-EEG-ECG of 150 ES events from 16 patients and 96 PNES from 10 patients were analysed. Four preictal periods (time before event onset) in EEG and ECG data were selected for each PNES and ES event (60-45 min, 45-30 min, 30-15 min, 15-0 min). Time-domain features were extracted from each preictal data segment in 17 EEG channels and 1 ECG channel. The classification performance using k-nearest neighbour, decision tree, random forest, naive Bayes, and support vector machine classifiers were evaluated. The results showed the highest classification accuracy was 87.83% using the random forest on 15-0 min preictal period of EEG and ECG data. The performance was significantly higher using 15-0 min preictal period data than 30-15 min, 45-30 min, and 60-45 min preictal periods (p<0.001). The classification accuracy was improved from 86.37% to 87.83% by combining ECG data with EEG data (p<0.001). The study provided an automated classification algorithm for PNES and ES events using machine learning techniques on preictal EEG and ECG data.
引用
收藏
页码:2831 / 2838
页数:8
相关论文
共 50 条
  • [1] Psychogenic non-epileptic seizures (PNES)
    Hingray, C.
    Biberon, J.
    El-Hage, W.
    de Toffol, B.
    REVUE NEUROLOGIQUE, 2016, 172 (4-5) : 263 - 269
  • [2] Psychogenic non-epileptic seizures in clinical practice
    Gugala-Iwaniuk, Magdalena
    Bochynska, Anna
    Sienkiewicz-Jarosz, Halina
    AKTUALNOSCI NEUROLOGICZNE, 2022, 22 (01): : 17 - 24
  • [3] Electrocardiography Changes in Children with Epileptic and Non-epileptic Seizures Compared to Controls
    Noori, Noormohammad
    Teimouri, Alireza
    Khajeh, Ali
    Shahri, Elham Shafighi
    INTERNATIONAL CARDIOVASCULAR RESEARCH JOURNAL, 2022, 16 (01) : 36 - 44
  • [4] Altered brain connectivity in patients with psychogenic non-epileptic seizures: A scalp electroencephalography study
    Xue, Qing
    Wang, Zhen-Yu
    Xiong, Xiu-Chun
    Tian, Chun-Yang
    Wang, Yu-Ping
    Xu, Peng
    JOURNAL OF INTERNATIONAL MEDICAL RESEARCH, 2013, 41 (05) : 1682 - 1690
  • [5] Distinct psychopathology profiles in patients with epileptic seizures compared to non-epileptic psychogenic seizures
    Wang, Albert D.
    Leong, Michelle
    Johnstone, Benjamin
    Rayner, Genevieve
    Kalincik, Tomas
    Roos, Izanne
    Kwan, Patrick
    O'Brien, Terence J.
    Velakoulis, Dennis
    Malpas, Charles B.
    EPILEPSY RESEARCH, 2019, 158
  • [6] Differentiating Epileptic and Psychogenic Non-Epileptic Seizures Using Machine Learning Analysis of EEG Plot Images
    Fussner, Steven
    Boyne, Aidan
    Han, Albert
    Nakhleh, Lauren A.
    Haneef, Zulfi
    SENSORS, 2024, 24 (09)
  • [7] Our experience with pseudoseizures (non-epileptic psychogenic seizures)
    Vojtech, Z
    CESKA A SLOVENSKA NEUROLOGIE A NEUROCHIRURGIE, 2000, 63 (03) : 152 - 161
  • [8] Management of psychogenic non-epileptic seizures: a multidisciplinary approach
    Gasparini, S.
    Beghi, E.
    Ferlazzo, E.
    Beghi, M.
    Belcastro, V.
    Biermann, K. P.
    Bottini, G.
    Capovilla, G.
    Cervellione, R. A.
    Cianci, V.
    Coppola, G.
    Cornaggia, C. M.
    De Fazio, P.
    De Masi, S.
    De Sarro, G.
    Elia, M.
    Erba, G.
    Fusco, L.
    Gambardella, A.
    Gentile, V.
    Giallonardo, A. T.
    Guerrini, R.
    Ingravallo, F.
    Iudice, A.
    Labate, A.
    Lucenteforte, E.
    Magaudda, A.
    Mumoli, L.
    Papagno, C.
    Pesce, G. B.
    Pucci, E.
    Ricci, P.
    Romeo, A.
    Quintas, R.
    Sueri, C.
    Vitaliti, G.
    Zoia, R.
    Aguglia, U.
    EUROPEAN JOURNAL OF NEUROLOGY, 2019, 26 (02) : 205 - +
  • [9] Psychogenic non-epileptic seizures in children - psychophysiology & dissociative characteristics
    Sawchuk, Tyson
    Buchhalter, Jeffrey
    Senft, Birgit
    PSYCHIATRY RESEARCH, 2020, 294
  • [10] An Overview of Psychogenic Non-Epileptic Seizures: Etiology, Diagnosis and Management
    Milan-Tomas, Angela
    Persyko, Michelle
    del Campo, Martin
    Shapiro, Colin M.
    Farcnik, Karl
    CANADIAN JOURNAL OF NEUROLOGICAL SCIENCES, 2018, 45 (02) : 130 - 136