Semi-Supervised Range-Based Anomaly Detection for Cloud Systems

被引:4
作者
Deka, Pratyush Kr. [1 ]
Verma, Yash [2 ]
Bin Bhutto, Adil [3 ]
Elmroth, Erik [3 ]
Bhuyan, Monowar [3 ]
机构
[1] Synechron Technol Pvt Ltd, Technol Dept, Pune 411057, India
[2] Ernst & Young Global LLP Spotmentor, People Advisory Serv Dept, Gurugram 122018, India
[3] Umea Univ, Dept Comp Sci, S-90187 Umea, Sweden
来源
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT | 2023年 / 20卷 / 02期
关键词
Anomaly detection; cloud reliability; LSTM encoder-decoder; time series reconstruction; dynamic density; range-based evaluation metrics;
D O I
10.1109/TNSM.2022.3225753
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The inherent characteristics of cloud systems often lead to anomalies, which pose challenges for high availability, reliability, and high performance. Detecting anomalies in cloud key performance indicators (KPI) is a critical step towards building a secure and trustworthy system with early mitigation features. This work is motivated by (i) the efficacy of recent reconstruction-based anomaly detection (AD), (ii) the misrepresentation of the accuracy of time series anomaly detection because point-based Precision and Recall are used to evaluate the efficacy for range-based anomalies, and (iii) detects performance and security anomalies when distributions shift and overlaps. In this paper, we propose a novel semi-supervised dynamic density-based detection rule that uses the reconstruction error vectors in order to detect anomalies. We use long short-term memory networks based on encoder-decoder (LSTM-ED) architecture to reconstruct the normal KPI time series. We experiment with both testbed and a diverse set of real-world datasets. The experimental results show that the dynamic density approach exhibits better performance compared to other detection rules using both standard and range-based evaluation metrics. We also compare the performance of our approach with state-of-the-art methods, outperforms in detecting both performance and security anomalies.
引用
收藏
页码:1290 / 1304
页数:15
相关论文
共 60 条
[1]   Malware Detection in Cloud Infrastructures using Convolutional Neural Networks [J].
Abdelsalam, Mahmoud ;
Krishnan, Ram ;
Huang, Yufei ;
Sandhu, Ravi .
PROCEEDINGS 2018 IEEE 11TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING (CLOUD), 2018, :162-169
[2]   Unsupervised real-time anomaly detection for streaming data [J].
Ahmad, Subutai ;
Lavin, Alexander ;
Purdy, Scott ;
Agha, Zuha .
NEUROCOMPUTING, 2017, 262 :134-147
[3]  
[Anonymous], 2021, CLOUD 2025 FUT WORKL
[4]  
[Anonymous], 2020, GLOB ENT SERV HOURL
[5]  
Avallone S, 2004, INT CONF QUANT EVAL, P316
[6]   Network Anomaly Detection: Methods, Systems and Tools [J].
Bhuyan, Monowar H. ;
Bhattacharyya, D. K. ;
Kalita, J. K. .
IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2014, 16 (01) :303-336
[7]   Collective Anomaly Detection Based on Long Short-Term Memory Recurrent Neural Networks [J].
Bontemps, Loic ;
Van Loi Cao ;
McDermott, James ;
Nhien-An Le-Khac .
FUTURE DATA AND SECURITY ENGINEERING, FDSE 2016, 2016, 10018 :141-152
[8]   LOF: Identifying density-based local outliers [J].
Breunig, MM ;
Kriegel, HP ;
Ng, RT ;
Sander, J .
SIGMOD RECORD, 2000, 29 (02) :93-104
[9]   Performance and scalability of EJB applications [J].
Cecchet, E ;
Marguerite, J ;
Zwaenepoel, W .
ACM SIGPLAN NOTICES, 2002, 37 (11) :246-261
[10]  
Chalapathy R, 2019, Arxiv, DOI [arXiv:1901.03407, 10.48550/ARXIV.1901.03407]