An element-free Galerkin method for the time-fractional subdiffusion equations

被引:1
作者
Hu, Zesen [1 ]
Li, Xiaolin [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 400047, Peoples R China
基金
中国国家自然科学基金;
关键词
Time-fractional subdiffusion equation; Meshless methods; Element-free Galerkin method; Error estimation; Caputo fractional derivatives; Initial-boundary conditions; ANOMALOUS DIFFUSION; APPROXIMATION; SCHEMES; IEFG;
D O I
10.1016/j.enganabound.2023.05.028
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper, an element-free Galerkin (EFG) method is developed for the numerical analysis of the time-fractional subdiffusion equation. By using the L2 - 1(sigma) formula to approximate the Caputo fractional derivative, a second-order accurate scheme is proposed to achieve temporal discretization. Then, time-independent integer-order boundary value problems are formed, and a stabilized EFG method is applied to establish the discretize linear algebraic systems. Error of the proposed meshless method is proved theoretically. Numerical results show the convergence and effectiveness of the method.
引用
收藏
页码:161 / 171
页数:11
相关论文
共 37 条
[1]   The Crank-Nicolson/interpolating stabilized element-free Galerkin method to investigate the fractional Galilei invariant advection-diffusion equation [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2021, 44 (04) :2752-2768
[2]   Numerical and analytical investigations for neutral delay fractional damped diffusion-wave equation based on the stabilized interpolating element free Galerkin (IEFG) method [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2019, 145 :488-506
[3]   A meshless numerical procedure for solving fractional reaction subdiffusion model via a new combination of alternating direction implicit (ADI) approach and interpolating element free Galerkin (EFG) method [J].
Abbaszadeh, Mostafa ;
Dehghan, Mehdi .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2015, 70 (10) :2493-2512
[4]   Numerical solutions for the Robin time-fractional partial differential equations of heat and fluid flows based on the reproducing kernel algorithm [J].
Abu Arqub, Omar .
INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2018, 28 (04) :828-856
[5]   A new difference scheme for the time fractional diffusion equation [J].
Alikhanov, Anatoly A. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2015, 280 :424-438
[6]  
Arqub OA, 2022, MATH SCI, DOI [10.1007/s40096-022-00495-9, DOI 10.1007/S40096-022-00495-9]
[7]   Adaptive the Dirichlet model of mobile/immobile advection/dispersion in a time-fractional sense with the reproducing kernel computational approach: Formulations and approximations [J].
Arqub, Omar Abu ;
Maayah, Banan .
INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2023, 37 (18)
[8]  
Babuska I., 2003, Acta Numerica, V12, P1, DOI 10.1017/S0962492902000090
[9]   ELEMENT-FREE GALERKIN METHODS [J].
BELYTSCHKO, T ;
LU, YY ;
GU, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1994, 37 (02) :229-256
[10]   ANOMALOUS DIFFUSION IN DISORDERED MEDIA - STATISTICAL MECHANISMS, MODELS AND PHYSICAL APPLICATIONS [J].
BOUCHAUD, JP ;
GEORGES, A .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1990, 195 (4-5) :127-293