Genome-wide association and epistasis studies reveal the genetic basis of saline-alkali tolerance at the germination stage in rice

被引:7
|
作者
Zhang, Guogen [1 ,2 ]
Bi, Zhiyuan [2 ]
Jiang, Jing [2 ]
Lu, Jingbing [2 ]
Li, Keyang [1 ]
Bai, Di [1 ]
Wang, Xinchen [1 ]
Zhao, Xueyu [1 ]
Li, Min [1 ]
Zhao, Xiuqin [2 ]
Wang, Wensheng [2 ,3 ]
Xu, Jianlong [2 ]
Li, Zhikang [1 ,2 ]
Zhang, Fan [2 ,3 ]
Shi, Yingyao [1 ]
机构
[1] Anhui Agr Univ, Coll Agron, Hefei, Anhui, Peoples R China
[2] Chinese Acad Agr Sci, Inst Crop Sci, Beijing, Peoples R China
[3] Chinese Acad Agr Sci, Natl Nanfan Res Inst Sanya, Sanya, Hainan, Peoples R China
来源
关键词
germination stage; genome-wide association study; epistasis; rice; saline-alkali tolerance; QUANTITATIVE TRAIT LOCUS; SALT TOLERANCE; SEED-GERMINATION; GRAIN-YIELD; AGRONOMIC TRAITS; BY-ENVIRONMENT; STRESS; DROUGHT; QTLS; IDENTIFICATION;
D O I
10.3389/fpls.2023.1170641
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
IntroductionSaline-alkali stress is one of the main abiotic factors limiting rice production worldwide. With the widespread use of rice direct seeding technology, it has become increasingly important to improve rice saline-alkali tolerance at the germination stage. MethodsTo understand the genetic basis of saline-alkali tolerance and facilitate breeding efforts for developing saline-alkali tolerant rice varieties, the genetic basis of rice saline-alkali tolerance was dissected by phenotyping seven germination-related traits of 736 diverse rice accessions under the saline-alkali stress and control conditions using genome-wide association and epistasis analysis (GWAES). ResultsTotally, 165 main-effect quantitative trait nucleotides (QTNs) and 124 additional epistatic QTNs were identified as significantly associated with saline-alkali tolerance, which explained a significant portion of the total phenotypic variation of the saline-alkali tolerance traits in the 736 rice accessions. Most of these QTNs were located in genomic regions either harboring saline-alkali tolerance QTNs or known genes for saline-alkali tolerance reported previously. Epistasis as an important genetic basis of rice saline-alkali tolerance was validated by genomic best linear unbiased prediction in which inclusion of both main-effect and epistatic QTNs showed a consistently better prediction accuracy than either main-effect or epistatic QTNs alone. Candidate genes for two pairs of important epistatic QTNs were suggested based on combined evidence from the high-resolution mapping plus their reported molecular functions. The first pair included a glycosyltransferase gene LOC_Os02g51900 (UGT85E1) and an E3 ligase gene LOC_Os04g01490 (OsSIRP4), while the second pair comprised an ethylene-responsive transcriptional factor, AP59 (LOC_Os02g43790), and a Bcl-2-associated athanogene gene, OsBAG1 (LOC_Os09g35630) for salt tolerance. Detailed haplotype analyses at both gene promoter and CDS regions of these candidate genes for important QTNs identified favorable haplotype combinations with large effects on saline-alkali tolerance, which can be used to improve rice saline-alkali tolerance by selective introgression. DiscussionOur findings provided saline-alkali tolerant germplasm resources and valuable genetic information to be used in future functional genomic and breeding efforts of rice saline-alkali tolerance at the germination stage.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Genome-wide association studies reveal the genetic basis of amino acid content variation in tea plants
    GUO Ya-fei
    LI Dai-li
    QIU Hai-ji
    ZHANG Xiao-liang
    LIU Lin
    ZHAO Jing-jing
    JIANG De-yuan
    Journal of Integrative Agriculture, 2023, 22 (11) : 3364 - 3379
  • [32] Identification of genetic loci for salt tolerance in Brassica napus at the germination stage using a genome-wide association study
    Yang, Tinghai
    Zhou, Xiaoying
    Cao, Yu
    Shi, Rui
    Wang, Yaping
    Xiang, Yanan
    Chen, Feng
    Zhang, Wei
    Sun, Chengming
    Fu, Sanxiong
    Hu, Maolong
    Zhang, Jiefu
    Zhu, Bin
    Wang, Xiaodong
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 221
  • [33] Genome-wide Association Mapping of Cold Tolerance Genes at the Seedling Stage in Rice
    Wang, Dan
    Liu, Jinling
    Li, Chengang
    Kang, Houxiang
    Wang, Yue
    Tan, Xinqiu
    Liu, Minghao
    Deng, Yufei
    Wang, Zhilong
    Liu, Yong
    Zhang, Deyong
    Xiao, Yinghui
    Wang, Guo-Liang
    RICE, 2016, 9
  • [34] Genome-wide Association Mapping of Cold Tolerance Genes at the Seedling Stage in Rice
    Dan Wang
    Jinling Liu
    Chengang Li
    Houxiang Kang
    Yue Wang
    Xinqiu Tan
    Minghao Liu
    Yufei Deng
    Zhilong Wang
    Yong Liu
    Deyong Zhang
    Yinghui Xiao
    Guo-Liang Wang
    Rice, 2016, 9
  • [35] Layers of epistasis: genome-wide regulatory networks and network approaches to genome-wide association studies
    Cowper-Sallari, Richard
    Cole, Michael D.
    Karagas, Margaret R.
    Lupien, Mathieu
    Moore, Jason H.
    WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE, 2011, 3 (05) : 513 - 526
  • [36] Genome-Wide Association Analysis of the Genetic Basis for Sheath Blight Resistance in Rice
    Fan Zhang
    Dan Zeng
    Cong-Shun Zhang
    Jia-Ling Lu
    Teng-Jun Chen
    Jun-Ping Xie
    Yong-Li Zhou
    Rice, 2019, 12
  • [37] Genome-wide association study reveals the genetic basis of cold tolerance in wheat
    Zhao, Yong
    Li, Jiahao
    Zhao, Ruiling
    Xu, Ke
    Xiao, Yirao
    Zhang, Shuhua
    Tian, Jichun
    Yang, Xueju
    MOLECULAR BREEDING, 2020, 40 (04)
  • [38] Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice
    Ren, Mengmeng
    Huang, Minghan
    Qiu, Haiyang
    Chun, Yan
    Li, Lu
    Kumar, Ashmit
    Fang, Jingjing
    Zhao, Jinfeng
    He, Hang
    Li, Xueyong
    RICE, 2021, 14 (01)
  • [39] The genetic basis of grain protein content in rice by genome-wide association analysis
    Chen, Pingli
    Lou, Guangming
    Wang, Yufu
    Chen, Junxiao
    Chen, Wengfeng
    Fan, Zhilan
    Liu, Qing
    Sun, Bingrui
    Mao, Xingxue
    Yu, Hang
    Jiang, Liqun
    Zhang, Jing
    Lv, Shuwei
    Xing, Junlian
    Pan, Dajian
    Li, Chen
    He, Yuqing
    MOLECULAR BREEDING, 2023, 43 (01)
  • [40] Genome-Wide Association Study of the Genetic Basis of Effective Tiller Number in Rice
    Mengmeng Ren
    Minghan Huang
    Haiyang Qiu
    Yan Chun
    Lu Li
    Ashmit Kumar
    Jingjing Fang
    Jinfeng Zhao
    Hang He
    Xueyong Li
    Rice, 2021, 14