Hybrid polymer-grafted graphene scaffolds for microvascular tissue engineering and regeneration

被引:11
|
作者
Amiryaghoubi, Nazanin [1 ]
Fathi, Marziyeh [1 ]
Barar, Jaleh [2 ]
Omidian, Hossein [2 ]
Omidi, Yadollah [2 ]
机构
[1] Tabriz Univ Med Sci, Biomed Inst, Res Ctr Pharmaceut Nanotechnol, Tabriz, Iran
[2] Nova Southeastern Univ, Coll Pharm, Dept Pharmaceut Sci, Ft Lauderdale, FL 33328 USA
关键词
Graphene; Microvascular tissue; Regenerative medicine; Polymer; Scaffold; Tissue engineering; BLOOD-BRAIN-BARRIER; DRUG-DELIVERY; RGD PEPTIDE; OXIDE; SYSTEM; CELLS; RECOGNITION; COLLAGEN; HYPOXIA; MATRIX;
D O I
10.1016/j.eurpolymj.2023.112095
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The function of organs/tissues and the success of tissue engineering fully depend on the integrity and function of blood vessels and the microvascular system. To regenerate autologous vascular grafts, both in vitro and in vivo strategies have been applied. While the in vitro approach is largely based on the use of a mixture of autologous cells (i.e., endothelial, smooth muscle cells, and fibroblasts) that can be seeded onto a decellularized scaffold, the in vivo modality is based on the recellularization process harnessing endogenous processes. The emergence of advanced nanobiomaterials (e.g., biopolymers, graphene-based and hybrid polymer-grafted graphene scaffolds) and technologies (e.g., 3D layer-by-layer bioprinting) has revolutionized engineering and regeneration of different tissues such as vessels and microvessels. Accordingly, various natural and synthetic biodegradable polymers have been utilized to serve as scaffolds for vascular tissue engineering, including polyglycolic acid (PGA), poly-l-lactic acid (PLLA), polyhydroxyalkanoate, polycaprolactone-copolylactic acid, poly(ethylene gly-col), PLLA/polylactide-coglycolide copolymer-coated PGA mesh, polyhydroxyoctanoate, and poly-caprolactoneas. Synthetic vascular grafts have also been engineered using some polymers such as expanded polytetrafluoroethylene, polyethylene terephthalate (Dacron (R)), and polyurethane. Various advanced bio-materials and nanostructures (e.g., graphene) have been used to serve as hybrid scaffolds for vascular tissue engineering. This review aims to address the applications of advanced polymer-grafted graphene-based hybrid scaffolds in microvascular tissue engineering and regeneration.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Recent advances in graphene-based polymer composite scaffolds for bone/ cartilage tissue engineering
    Amiryaghoubi, Nazanin
    Fathi, Marziyeh
    Barar, Jaleh
    Omidian, Hossein
    Omidi, Yadollah
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 72
  • [2] Graphene based scaffolds on bone tissue engineering
    Shadjou, Nasrin
    Hasanzadeh, Mohammad
    Khalilzadeh, Balal
    BIOENGINEERED, 2018, 9 (01) : 38 - 47
  • [3] Tissue engineering and regeneration using biodegradable scaffolds
    Zhang, X.
    Zhang, Y.
    PANMINERVA MEDICA, 2015, 57 (04) : 147 - 152
  • [4] Hyperbranched Cyclotriphosphazene Polymer-grafted Graphene with Amphipathicity
    Liu, Chao
    Yan, Hongxia
    Feng, Shuyao
    Li, Tingting
    Zhang, Mengmeng
    CHEMISTRY LETTERS, 2014, 43 (08) : 1263 - 1265
  • [5] Graphene-based scaffolds for tissue engineering and photothermal therapy
    Palmieri, Valentina
    De Spirito, Marco
    Papi, Massimiliano
    NANOMEDICINE, 2020, 15 (14) : 1411 - 1417
  • [6] Hybrid carbon nanotube-polymer scaffolds for cardiac tissue regeneration
    Ahadian, Samad
    Davenport-Huyer, Locke
    Smith, Nathaniel
    Radisic, Milica
    MICROFLUIDICS, BIOMEMS, AND MEDICAL MICROSYSTEMS XV, 2017, 10061
  • [7] Graphene-Based Scaffolds: Fundamentals and Applications for Cardiovascular Tissue Engineering
    Savchenko, Alex
    Yin, Rose T.
    Kireev, Dmitry
    Efimov, Igor R.
    Molokanova, Elena
    FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2021, 9
  • [8] Graphene-based hybrid materials as promising scaffolds for peripheral nerve regeneration
    Grijalvo, Santiago
    Diaz, David Diaz
    NEUROCHEMISTRY INTERNATIONAL, 2021, 147
  • [9] Electroactive graphene composite scaffolds for cardiac tissue engineering
    Hitscherich, Pamela
    Aphale, Ashish
    Gordan, Richard
    Whitaker, Ricardo
    Singh, Prabhakar
    Xie, Lai-hua
    Patra, Prabir
    Lee, Eun Jung
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2018, 106 (11) : 2923 - 2933
  • [10] Mechanical characterization of polymer-grafted graphene PEG nanocomposites using molecular dynamics
    Guarda, Catia
    Faria, Bruno
    Lopes, Jose N. Canongia
    Silvestre, Nuno
    COMPOSITES SCIENCE AND TECHNOLOGY, 2024, 250