The efficacy of red channel enhanced images for AI segmentation of bladder tumors in Cystoscopic

被引:0
|
作者
Mutaguchi, J. [1 ]
Morooka, K. [2 ]
Kinoshita, F. [1 ]
Matsumoto, T. [1 ]
Monji, K. [1 ]
Kashiwagi, E. [1 ]
Shiota, M. [1 ]
Inokuchi, J. [1 ]
Eto, M. [1 ]
机构
[1] Kyushu Univ Hosp, Dept Urol, Fukuoka, Japan
[2] Okayama Univ, Grad Sch Nat Sci, Compute Sci, Okayama, Japan
关键词
D O I
暂无
中图分类号
R5 [内科学]; R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号
1002 ; 100201 ;
摘要
A0595
引用
收藏
页码:S847 / S848
页数:2
相关论文
共 30 条
  • [1] An innovate segmentation system by implementing dilated convolution and red channel enhanced images in cystoscopic images
    Mutaguchi, J.
    Morooka, K.
    Goto, S.
    Kobayashi, S.
    Matsumoto, T.
    Shiota, M.
    Inokuchi, J.
    Eto, M.
    EUROPEAN UROLOGY, 2024, 85 : S377 - S377
  • [2] Deep learning system for automatic detection of bladder tumors in cystoscopic images
    Mutaguchi, J.
    Oda, M.
    Ueda, S.
    Kinoshita, F.
    Naganuma, H.
    Matsumoto, T.
    Lee, K.
    Monji, K.
    Kashiwagi, K.
    Takeuchi, A.
    Shiota, M.
    Inokuchi, J.
    Mori, K.
    Eto, M.
    EUROPEAN UROLOGY, 2021, 79 : S1022 - S1023
  • [3] AI-based classification and segmentation method for bladder cancer from cystoscopic image: Preliminary study
    Hwang, W. K.
    Kim, H. J.
    Jo, S. B.
    Ahn, S. T.
    Oh, M. M.
    Park, H. S.
    Moon, D. G.
    Choi, I.
    Yang, Z.
    Cho, H. Y.
    Kim, J. W.
    EUROPEAN UROLOGY, 2024, 85 : S859 - S860
  • [4] Artificial Intelligence for Segmentation of Bladder Tumor Cystoscopic Images Performed by U-Net with Dilated Convolution
    Mutaguchi, Jun
    Morooka, Ken'ichi
    Kobayashi, Satoshi
    Umehara, Aiko
    Miyauchi, Shoko
    Kinoshita, Fumio
    Inokuchi, Junichi
    Oda, Yoshinao
    Kurazume, Ryo
    Eto, Masatoshi
    JOURNAL OF ENDOUROLOGY, 2022, 36 (06) : 827 - 834
  • [5] Simulation of brain tumors in MR images for evaluation of segmentation efficacy
    Prastawa, Marcel
    Bullitt, Elizabeth
    Gerig, Guido
    MEDICAL IMAGE ANALYSIS, 2009, 13 (02) : 297 - 311
  • [6] DEEP LEARNING SYSTEM FOR AUTOMATIC DETECTION OF BLADDER TUMORS IN NARROW-BAND IMAGING (NBI) CYSTOSCOPIC IMAGES
    Mutaguchi, Jun
    Oda, Masahiro
    Ueda, Shouhei
    Kinoshita, Fumio
    Naganuma, Hidekazu
    Matumoto, Takashi
    Lee, Ken
    Monji, Keisuke
    Kashiwagi, Eiji
    Takeuchi, Ario
    Shiota, Masaki
    Inokuchi, Junichi
    Mori, Kensaku
    Eto, Masatoshi
    JOURNAL OF UROLOGY, 2021, 206 : E836 - E836
  • [7] Optic Disc Segmentation Based on Red Channel Retinal Fundus Images
    Oktoeberza, K. Z. Widhia
    Nugroho, Hanung Adi
    Adji, Teguh Bharata
    INTELLIGENCE IN THE ERA OF BIG DATA, ICSIIT 2015, 2015, 516 : 348 - 359
  • [8] Segmentation of bladder tumors in Cystoscopy Images using a MAP approach in different color spaces
    Freitas, Nuno R.
    Vieira, Pedro M.
    Lima, Estevao
    Lima, Carlos S.
    2017 IEEE 5TH PORTUGUESE MEETING ON BIOENGINEERING (ENBENG), 2017,
  • [9] PIxel-Level Segmentation of Bladder Tumors on MR Images Using a Random Forest Classifier
    Li, Ziqi
    Feng, Na
    Pu, Huangsheng
    Dong, Qi
    Liu, Yan
    Liu, Yang
    Xu, Xiaopan
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2022, 21
  • [10] MDER-Net: A Multi-Scale Detail-Enhanced Reverse Attention Network for Semantic Segmentation of Bladder Tumors in Cystoscopy Images
    Nie, Chao
    Xu, Chao
    Li, Zhengping
    MATHEMATICS, 2024, 12 (09)