Fractal dimension complexity of gravitation fractals in central place theory

被引:3
|
作者
Banaszak, Michal [1 ]
Gornisiewicz, Krzysztof [2 ]
Nijkamp, Peter [3 ,4 ]
Ratajczak, Waldemar [5 ]
机构
[1] Adam Mickiewicz Univ, Fac Phys, Poznan, Poland
[2] Adam Mickiewicz Univ, Fac Math & Comp Sci, Poznan, Poland
[3] Open Univ, Heerlen, Netherlands
[4] Alexandru Ioan Cuza Univ, Iasi, Romania
[5] Adam Mickiewicz Univ, Fac Socio Econ Geog & Spatial Management, Poznan, Poland
关键词
HAUSDORFF DIMENSION; DYNAMIC-MODEL; TRANSITION; GEOGRAPHY; PATTERNS; SYSTEMS;
D O I
10.1038/s41598-023-28534-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Settlement centers of various types, including cities, produce basins of attraction whose shape can be regular or complexly irregular (from the point of view of geometry). This complexity depends in part on properties of the space surrounding a settlement. This paper demonstrates that by introducing a dynamic approach to space and by including an equation of motion and space resistance, a dramatic change in the stylized static CPT (Central Place Theory) image occurs. As a result of the interplay of gravitational forces, basins of attraction arise around cities, whose boundaries appear to be fractals. This study provides a wealth of spatial fractal complex images which may change the traditional understanding of CPT.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Predicting beauty: Fractal dimension and visual complexity in art
    Forsythe, A.
    Nadal, M.
    Sheehy, N.
    Cela-Conde, C. J.
    Sawey, M.
    BRITISH JOURNAL OF PSYCHOLOGY, 2011, 102 : 49 - 70
  • [22] Cortical Complexity in Anorexia Nervosa: A Fractal Dimension Analysis
    Collantoni, Enrico
    Madan, Christopher R.
    Meneguzzo, Paolo
    Chiappini, Iolanna
    Tenconi, Elena
    Manara, Renzo
    Favaro, Angela
    JOURNAL OF CLINICAL MEDICINE, 2020, 9 (03)
  • [23] Estimating case base complexity using Fractal Dimension
    1600, Springer Verlag (8765):
  • [24] Fractal dimension as a tool for description of forest structure complexity
    Tracz, Wiktor
    Mozgawa, Jerzy
    Sterenczak, Krzysztof
    SYLWAN, 2011, 155 (06): : 384 - 392
  • [25] FRACTAL DIMENSION AS A QUANTITATIVE MEASURE OF COMPLEXITY IN PLANT DEVELOPMENT
    CORBIT, JD
    GARBARY, DJ
    PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 1995, 262 (1363) : 1 - 6
  • [26] On the numerical study of the complexity and fractal dimension of CMB anisotropies
    Allahverdyan, AE
    Gurzadyan, VG
    Soghoyan, AA
    INTERNATIONAL JOURNAL OF MODERN PHYSICS D, 1999, 8 (03): : 383 - 393
  • [27] Measuring fractal dimension and complexity - An alternative approach with an application
    Sandau, K
    Kurz, H
    JOURNAL OF MICROSCOPY-OXFORD, 1997, 186 : 164 - 176
  • [28] A Relative Fractal Dimension Spectrum for a Perceptual Complexity Measure
    Kinsner, W.
    Dansereau, R.
    INTERNATIONAL JOURNAL OF COGNITIVE INFORMATICS AND NATURAL INTELLIGENCE, 2008, 2 (01) : 73 - 86
  • [29] Measuring fractal dimension and complexity - An alternative approach with an application
    FB Math. und Naturwissenschaften, FH Darmstadt, Schöfferstr. 3, D-64295 Darmstadt, Germany
    不详
    J. MICROSC., 2 (164-176):
  • [30] HODGE-de RHAM THEORY ON FRACTAL GRAPHS AND FRACTALS
    Aaron, Skye
    Conn, Zach
    Strichartz, Robert S.
    Yu, Hui
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 903 - 928