Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells

被引:21
|
作者
Li, Chao [1 ]
Yi, Kexin [1 ]
Hu, Shaogang [1 ]
Yang, Wulin [1 ]
机构
[1] Peking Univ, Coll Environm Sci & Engn, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
关键词
Air -breathing MFC; Microbial separator; Niche -selective superiority; Biofouling elimination; Stability and sustainability; WASTE-WATER TREATMENT; EXTRACELLULAR ELECTRON-TRANSFER; ELECTRICITY-GENERATION; POWER-GENERATION; ACTIVATED CARBON; PERFORMANCE; MEMBRANES; LAYER; ANODE; FLOW;
D O I
10.1016/j.ese.2023.100251
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Microbial fuel cells (MFCs) incorporating air-breathing cathodes have emerged as a promising ecofriendly wastewater treatment technology capable of operating on an energy-free basis. However, the inevitable biofouling of these devices rapidly decreases cathodic catalytic activity and also reduces the stability of MFCs during long-term operation. The present work developed a novel microbial separator for use in air-breathing MFCs that protects cathodic catalytic activity. In these modified devices, microbes preferentially grow on the microbial separator rather than the cathodic surface such that biofouling is prevented. Trials showed that this concept provided low charge transfer and mass diffusion resistance values during the cathodic oxygen reduction reaction of 4.6 +/- 1.3 and 17.3 +/- 6.8 U, respectively, after prolonged operation. The maximum power density was found to be stable at 1.06 +/- 0.07 W m-2 throughout a long-term test and the chemical oxygen demand removal efficiency was increased to 92% compared with a value of 83% for MFCs exhibiting serious biofouling. In addition, a cathode combined with a microbial separator demonstrated less cross-cathode diffusion of oxygen to the anolyte. This effect indirectly induced the growth of electroactive bacteria and produced higher currents in air-breathing MFCs. Most importantly, the present microbial separator concept enhances both the lifespan and economics of air-breathing MFCs by removing the need to replace or regenerate the cathode during longterm operation. These results indicate that the installation of a microbial separator is an effective means of stabilizing power generation and ensuring the cost-effective performance of air-breathing MFCs intended for future industrial applications.(c) 2023 The Authors. Published by Elsevier B.V. on behalf of Chinese Society for Environmental Sciences, Harbin Institute of Technology, Chinese Research Academy of Environmental Sciences. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页数:9
相关论文
共 50 条
  • [31] Characteristic behaviors on air-breathing direct methanol fuel cells
    Chang, Ikwhang
    Lee, Minhwan
    Cha, Suk Won
    INTERNATIONAL JOURNAL OF PRECISION ENGINEERING AND MANUFACTURING, 2012, 13 (07) : 1141 - 1144
  • [32] Thermal modelling of the cathode in air-breathing PEM fuel cells
    Ismail, M. S.
    Ingham, D. B.
    Hughes, K. J.
    Ma, L.
    Pourkashanian, M.
    APPLIED ENERGY, 2013, 111 : 529 - 537
  • [33] Characteristic behaviors on air-breathing direct methanol fuel cells
    Ikwhang Chang
    Minhwan Lee
    Suk Won Cha
    International Journal of Precision Engineering and Manufacturing, 2012, 13 : 1141 - 1144
  • [34] A Numerical Study on the Performance of Air-breathing Microfluidic Fuel Cells
    Herlambang, Yusuf D.
    Shyu, Jin-Cherng
    Lee, Shun-Ching
    2017 IEEE 12TH INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS (NEMS), 2017, : 503 - 508
  • [35] Air-breathing fuel cells fed with dimethoxymethane (DMM) vapor
    Kim, Jin-Ho
    Kang, Yong-Mook
    Kim, Hae-Kyoung
    ELECTROCHEMISTRY COMMUNICATIONS, 2010, 12 (09) : 1145 - 1148
  • [36] Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells
    Li, Yue
    Li, Xiaojing
    Sun, Yang
    Zhao, Xiaodong
    Li, Yongtao
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2018, 25 (17) : 16900 - 16912
  • [37] Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells
    Yue Li
    Xiaojing Li
    Yang Sun
    Xiaodong Zhao
    Yongtao Li
    Environmental Science and Pollution Research, 2018, 25 : 16900 - 16912
  • [38] A microbial biofuel cell with an air-breathing cathode for in vivo glucose sensing applications
    Lee, Jin Wook
    ANALYTICAL METHODS, 2015, 7 (08) : 3324 - 3326
  • [39] MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells
    Elouarzaki, Kamal
    Haddad, Raoudha
    Holzinger, Michael
    Le Goff, Alan
    Thery, Jessica
    Cosnier, Serge
    JOURNAL OF POWER SOURCES, 2014, 255 : 24 - 28
  • [40] Effect of Cathodic Biofilm on the Performance of Air-Cathode Single Chamber Microbial Fuel Cells
    Ahmed, Jalal
    Kim, Sunghyun
    BULLETIN OF THE KOREAN CHEMICAL SOCIETY, 2011, 32 (10): : 3726 - 3729