ETCNLog: A System Log Anomaly Detection Method Based on Efficient Channel Attention and Temporal Convolutional Network

被引:1
|
作者
Chang, Yuyuan [1 ]
Luktarhan, Nurbol [1 ]
Liu, Jingru [2 ]
Chen, Qinglin [1 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi 830046, Peoples R China
[2] Xinjiang Univ, Sch Software, Urumqi 830046, Peoples R China
关键词
anomaly detection; efficient channel attention; global average pooling; system log; temporal convolutional network;
D O I
10.3390/electronics12081877
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The scale of the system and network applications is expanding, and higher requirements are being put forward for anomaly detection. The system log can record system states and significant operational events at different critical points. Therefore, using the system log for anomaly detection can help with system maintenance and avoid unnecessary loss. The system log has obvious timing characteristics, and the execution sequence of the system log has a certain dependency relationship. However, sometimes the length of sequence dependence is long. To handle the problem of longer sequence logs in anomaly detection, this paper proposes a system log anomaly detection method based on efficient channel attention and temporal convolutional network (ETCNLog). It builds a model by treating the system log as a natural language sequence. To handle longer sequence logs more effectively, ETCNLog uses the semantic and timing information of logs. It can automatically learn the importance of different log sequences and detect hidden dependencies within sequences to improve the accuracy of anomaly detection. We run extensive experiments on the actual public log dataset BGL. The experimental results show that the Precision and F1-score of ETCNLog reach 98.15% and 98.21%, respectively, both of which are better than the current anomaly detection methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] A Graph Convolutional Network for Active Distribution System Anomaly Detection Considering Measurement Spatial-temporal Correlations
    Zhang, Jinxian
    Zhao, Junbo
    Ding, Fei
    Yang, Jing
    Zhao, Junhui
    2023 NORTH AMERICAN POWER SYMPOSIUM, NAPS, 2023,
  • [42] Hyperspectral anomaly detection based on adaptive weighting method combined with autoencoder and convolutional neural network
    Hou, Minkai
    Wang, Tao
    Su, Yanzhao
    Cai, Yanping
    Cao, Jiping
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (07) : 2638 - 2658
  • [43] Normal graph: Spatial temporal graph convolutional networks based prediction network for skeleton based video anomaly detection
    Luo, Weixin
    Liu, Wen
    Gao, Shenghua
    NEUROCOMPUTING, 2021, 444 : 332 - 337
  • [44] GLAD-PAW: Graph-Based Log Anomaly Detection by Position Aware Weighted Graph Attention Network
    Wan, Yi
    Liu, Yilin
    Wang, Dong
    Wen, Yujin
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PAKDD 2021, PT I, 2021, 12712 : 66 - 77
  • [45] Multivariate time-series anomaly detection via temporal convolutional and graph attention networks
    He, Qiang
    Wang, Guanqun
    Wang, Hengyou
    Chen, Linlin
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2023, 44 (04) : 5953 - 5962
  • [46] Intrusion Detection Model Using Temporal Convolutional Network Blend Into Attention Mechanism
    Zhao, Ping
    Fan, Zhijie
    Cao, Zhiwei
    Li, Xin
    INTERNATIONAL JOURNAL OF INFORMATION SECURITY AND PRIVACY, 2022, 16 (01) : 1 - 20
  • [47] A novel unsupervised anomaly detection method for rotating machinery based on memory augmented temporal convolutional autoencoder
    Li, Wanxiang
    Shang, Zhiwu
    Zhang, Jie
    Gao, Maosheng
    Qian, Shiqi
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [48] LogTracer: Efficient Anomaly Tracing Combining System Log Detection and Provenance Graph
    Niu, Weina
    Yu, Zhenqi
    Li, Zimu
    Li, Beibei
    Zhang, Runzi
    Zhang, Xiaosong
    2022 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM 2022), 2022, : 3356 - 3361
  • [49] TEMPORAL CONVOLUTIONAL NETWORK WITH COMPLEMENTARY INNER BAG LOSS FOR WEAKLY SUPERVISED ANOMALY DETECTION
    Zhang, Jiangong
    Qing, Laiyun
    Miao, Jun
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 4030 - 4034
  • [50] Leveraging Semisupervised Hierarchical Stacking Temporal Convolutional Network for Anomaly Detection in IoT Communication
    Cheng, Yongliang
    Xu, Yan
    Zhong, Hong
    Liu, Yi
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (01): : 144 - 155