Microfluidic paper-based analytical devices for cancer diagnosis

被引:21
|
作者
Shalaby, Ahmed A. [1 ,2 ]
Tsao, Chia-Wen [3 ]
Ishida, Akihiko [4 ]
Maeki, Masatoshi [4 ]
Tokeshi, Manabu [4 ,5 ,6 ]
机构
[1] Hokkaido Univ, Grad Sch Chem Sci & Engn, Sapporo 0608628, Japan
[2] Ain Shams Univ, Fac Sci, Dept Chem, Cairo 11566, Egypt
[3] Natl Cent Univ, Dept Mech Engn, Taoyuan 32001, Taiwan
[4] Hokkaido Univ, Fac Engn, Div Appl Chem, Sapporo 0608628, Japan
[5] Nagoya Univ, Innovat Res Ctr Prevent Med Engn, Nagoya 4648601, Japan
[6] Nagoya Univ, Inst Innovat Future Soc, Nagoya 4648601, Japan
关键词
Point-of-need (PON); Microfluidic paper-based analytical devices; (?PADs); Paper-based sensors; Cancer; Biomarkers detection; PAD fabrication; LAB-ON-PAPER; REDUCED GRAPHENE OXIDE; SIGNAL AMPLIFICATION; ELECTROCHEMILUMINESCENCE IMMUNODEVICE; ELECTROCHEMICAL IMMUNODEVICE; LOW-COST; SENSITIVE DETECTION; MULTIPLEXED DETECTION; VISUAL DETECTION; ELECTROGENERATED CHEMILUMINESCENCE;
D O I
10.1016/j.snb.2022.133243
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Cancer is a leading cause of death worldwide. Early diagnosis of cancer is crucial for successful treatment which, in turn, will decrease mortality. The development of low-cost, accurate, and easy to operate point-of-need (PON) devices to be used for cancer diagnosis and treatment follow-up is a worldwide need, especially in developing countries. Paper-based analytical devices (PADs) are considered a key solution, as they provide a low-cost platform for developing PON biosensors for cancer biomarker detections. There are various types of 2D and 3D PADs according to the type of paper substrate (filter paper, chromatographic paper, nitrocellulose mem-branes, etc.), fabrication method (wax printing, screen printing, cutting, etc.), detection technique used (colorimetry, fluorescence, chemiluminescence, electrochemiluminescence, electrochemical, etc.), the assay principle and recognition element used (antibodies, aptamers, DNA, nanoparticles, enzymes, etc.). Controlling all these factors determines the performance, accuracy, and sensitivity of the developed devices. This review dis-cusses all these factors in the different PADs used for detection of cancer biomarkers and summarizes the ad-vantages and disadvantages of each one.
引用
收藏
页数:28
相关论文
共 50 条
  • [21] Fully-enclosed microfluidic paper-based analytical devices
    Schilling, Kevin M.
    Lepore, Anna L.
    Kurian, Jason A.
    Martinez, Andres W.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243
  • [22] Research Progress and Future Trends of Microfluidic Paper-Based Analytical Devices in In-Vitro Diagnosis
    Zhang, Taiyi
    Ding, Feng
    Yang, Yujing
    Zhao, Gaozhen
    Zhang, Chuanhao
    Wang, Ruiming
    Huang, Xiaowen
    BIOSENSORS-BASEL, 2022, 12 (07):
  • [23] "Paper-based Analytical Devices"
    不详
    Analytical Sciences, 2017, 33 (3) : 259 - 259
  • [24] Signal Amplified Gold Nanoparticles for Cancer Diagnosis on Paper-Based Analytical Devices
    Huang, Jia-Yu
    Lin, Hong-Ting
    Chen, Tzu-Heng
    Chen, Chung-An
    Chang, Huan-Tsung
    Chen, Chien-Fu
    ACS SENSORS, 2018, 3 (01): : 174 - 182
  • [25] 3D Printed Paper-Based Microfluidic Analytical Devices
    He, Yong
    Gao, Qing
    Wu, Wen-Bin
    Nie, Jing
    Fu, Jian-Zhong
    MICROMACHINES, 2016, 7 (07):
  • [26] Microfluidic Paper-based Analytical Devices for Determination of Creatinine in Urine Samples
    Suphanan Sununta
    Poomrat Rattanarat
    Orawon Chailapakul
    Narong Praphairaksit
    Analytical Sciences, 2018, 34 : 109 - 113
  • [27] Transverse solute dispersion in microfluidic paper-based analytical devices (μPADs)
    Urteaga, Raul
    Elizalde, Emanuel
    Berli, Claudio L. A.
    ANALYST, 2018, 143 (10) : 2259 - 2266
  • [28] Fabrication, Flow Control, and Applications of Microfluidic Paper-Based Analytical Devices
    Lim, Hosub
    Jafry, Ali Turab
    Lee, Jinkee
    MOLECULES, 2019, 24 (16):
  • [29] Paper-based Analytical Devices
    Hisamoto, Hideaki
    ANALYTICAL SCIENCES, 2017, 33 (07) : 753 - 753
  • [30] Determination of nitrite in saliva using microfluidic paper-based analytical devices
    Bhakta, Samir A.
    Borba, Rubiane
    Taba, Mario, Jr.
    Garcia, Carlos D.
    Carrilho, Emanuel
    ANALYTICA CHIMICA ACTA, 2014, 809 : 117 - 122