On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations

被引:4
|
作者
Zhang, Yiming [1 ]
Yu, Dongmei [1 ]
Yuan, Yifei [1 ]
机构
[1] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxin 123000, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
absolute value equations; alternative; SOR-like method; convergence analysis; GENERALIZED NEWTON METHOD; LEVENBERG-MARQUARDT METHOD; SMOOTHING FUNCTIONS; SYSTEM; MODEL;
D O I
10.3390/sym15030589
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, by equivalently reformulating the absolute value equation (AVE) into an alternative two-by-two block nonlinear equation, we put forward an alternative SOR-like (ASOR-like) iteration method to solve the AVE. The convergence of the ASOR-like iteration method is established, subjecting to specific restrictions placed on the associated parameter. The selection of the optimal iteration parameter is investigated theoretically. Numerical experiments are given to validate the feasibility and effectiveness of the ASOR-like iteration method.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Flexible Operator Splitting Methods for Solving Absolute Value Equations
    Chen, Yongxin
    Han, Deren
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [42] New generalized Gauss-Seidel iteration methods for solving absolute value equations
    Ali, Rashid
    Pan, Kejia
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2023,
  • [43] The study of new fixed-point iteration schemes for solving absolute value equations
    Ali, Rashid
    Zhang, Zhao
    Awwad, Fuad A.
    HELIYON, 2024, 10 (14)
  • [44] An Efficient Algorithm for Solving Absolute Value Equations
    Fakharzadeh, A. J.
    Shams, N. N.
    JOURNAL OF MATHEMATICAL EXTENSION, 2021, 15 (03)
  • [45] Iterative methods for solving absolute value equations
    Ali, Rashid
    Ali, Asad
    Iqbal, Shahid
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2022, 26 (04): : 322 - 329
  • [46] A New Efficient Method for Absolute Value Equations
    Guo, Peng
    Iqbal, Javed
    Ghufran, Syed Muhammad
    Arif, Muhammad
    Alhefthi, Reem K.
    Shi, Lei
    MATHEMATICS, 2023, 11 (15)
  • [47] A new two-step iterative technique for efficiently solving absolute value equations
    Gul, Nisar
    Chen, Haibo
    Iqbal, Javed
    Shah, Rasool
    ENGINEERING COMPUTATIONS, 2024, 41 (05) : 1272 - 1284
  • [48] A new two-step iterative method for solving absolute value equations
    Feng, Jingmei
    Liu, Sanyang
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (1)
  • [49] An Optimized AOR Iterative Method for Solving Absolute Value Equations
    Jahromi, Alireza Fakharzadeh
    Shams, Nafiseh Naseri
    FILOMAT, 2021, 35 (02) : 459 - 476
  • [50] New smoothing function for solving absolute value equations
    Chalekh, Randa
    Djeffal, El Amir
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2023, 16 (12)