On the Alternative SOR-like Iteration Method for Solving Absolute Value Equations

被引:4
|
作者
Zhang, Yiming [1 ]
Yu, Dongmei [1 ]
Yuan, Yifei [1 ]
机构
[1] Liaoning Tech Univ, Inst Optimizat & Decis Analyt, Fuxin 123000, Peoples R China
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 03期
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
absolute value equations; alternative; SOR-like method; convergence analysis; GENERALIZED NEWTON METHOD; LEVENBERG-MARQUARDT METHOD; SMOOTHING FUNCTIONS; SYSTEM; MODEL;
D O I
10.3390/sym15030589
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, by equivalently reformulating the absolute value equation (AVE) into an alternative two-by-two block nonlinear equation, we put forward an alternative SOR-like (ASOR-like) iteration method to solve the AVE. The convergence of the ASOR-like iteration method is established, subjecting to specific restrictions placed on the associated parameter. The selection of the optimal iteration parameter is investigated theoretically. Numerical experiments are given to validate the feasibility and effectiveness of the ASOR-like iteration method.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] On an iterative method for solving absolute value equations
    Muhammad Aslam Noor
    Javed Iqbal
    Khalida Inayat Noor
    Eisa Al-Said
    Optimization Letters, 2012, 6 : 1027 - 1033
  • [32] On an iterative method for solving absolute value equations
    Noor, Muhammad Aslam
    Iqbal, Javed
    Noor, Khalida Inayat
    Al-Said, Eisa
    OPTIMIZATION LETTERS, 2012, 6 (05) : 1027 - 1033
  • [33] Modulus-based block triangular splitting iteration method for solving the generalized absolute value equations
    Pingfei Dai
    Qingbiao Wu
    Numerical Algorithms, 2024, 96 : 537 - 555
  • [34] Modulus-based block triangular splitting iteration method for solving the generalized absolute value equations
    Dai, Pingfei
    Wu, Qingbiao
    NUMERICAL ALGORITHMS, 2024, 96 (02) : 537 - 555
  • [35] Two effective inexact iteration methods for solving the generalized absolute value equations
    Guo, Miao
    Wu, Qingbiao
    AIMS MATHEMATICS, 2022, 7 (10): : 18675 - 18689
  • [36] A New Iterative Method for Solving Absolute Value Equations
    Jing, Li
    Fei, Qin
    Jie, Liu
    Bin, Zhou
    PROCEEDINGS OF 2016 12TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND SECURITY (CIS), 2016, : 555 - 556
  • [37] Levenberg-Marquardt method for solving systems of absolute value equations
    Iqbal, Javed
    Iqbal, Asif
    Arif, Muhammad
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 282 : 134 - 138
  • [38] The relaxed MGHSS-like method for absolute value equations
    Shao, Xin-Hui
    Yang, Shao-Xiong
    FILOMAT, 2023, 37 (26) : 8845 - 8865
  • [39] An improved two-sweep iteration method for absolute value equations
    Hongbing Zhang
    Yanjun Zhang
    Yajing Li
    Hongtao Fan
    Computational and Applied Mathematics, 2022, 41
  • [40] Neurodynamic approaches for solving absolute value equations and circuit implementation
    Yu, Dongmei
    Zhang, Gehao
    Ma, Tiange
    CHAOS SOLITONS & FRACTALS, 2025, 190