Super-Resolution Imaging of Bacterial Secreted Proteins Using Genetic Code Expansion

被引:2
|
作者
Singh, Moirangthem Kiran [1 ]
Kenney, Linda J. [1 ]
机构
[1] Univ Texas Med Branch, Biochem & Mol Biol, Galveston, TX 77550 USA
来源
关键词
NONCANONICAL AMINO-ACIDS; LABELING IN-VITRO; SALMONELLA-TYPHIMURIUM; FLUORESCENT PROTEINS; ESCHERICHIA-COLI; GENERAL-METHOD; LIVE-CELL; SINGLE; MEMBRANE;
D O I
10.3791/64382
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Type three secretion systems (T3SSs) enable gram-negative bacteria to inject a battery of effector proteins directly into the cytosol of eukaryotic host cells. Upon entry, the injected effector proteins cooperatively modulate eukaryotic signaling pathways and reprogram cellular functions, enabling bacterial entry and survival. Monitoring and localizing these secreted effector proteins in the context of infections provides a footprint for defining the dynamic interface of host-pathogen interactions. However, labeling and imaging bacterial proteins in host cells without disrupting their structure/ function is technically challenging.Constructing fluorescent fusion proteins does not resolve this problem, because the fusion proteins jam the secretory apparatus and thus are not secreted. To overcome these obstacles, we recently employed a method for site-specific fluorescent labeling of bacterial secreted effectors, as well as other difficult-to-label proteins, using genetic code expansion (GCE). This paper provides a complete step-by-step protocol to label Salmonella secreted effectors using GCE site-specifically, followed by directions for imaging the subcellular localization of secreted proteins in HeLa cells using direct stochastic optical reconstruction microscopy (dSTORM)Recent findings suggest that the incorporation of non-canonical amino acids (ncAAs) via GCE, followed by bio-orthogonal labeling with tetrazine-containing dyes, is a viable technique for selective labeling and visualization of bacterial secreted proteins and subsequent image analysis in the host. The goal of this article is to provide a straightforward and clear protocol that can be employed by investigators interested in conducting super-resolution imaging using GCE to study various biological processes in bacteria and viruses, as well as host-pathogen interactions.
引用
收藏
页数:22
相关论文
共 50 条
  • [41] Neuromorphic Imaging With Super-Resolution
    Zhang, Pei
    Zhu, Shuo
    Wang, Chutian
    Zhao, Yaping
    Lam, Edmund Y.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2025, 35 (02) : 1715 - 1727
  • [42] On super-resolution in astronomical imaging
    Puschmann, KG
    Kneer, F
    ASTRONOMY & ASTROPHYSICS, 2005, 436 (01) : 373 - 378
  • [43] SUPER-RESOLUTION IN CONFOCAL IMAGING
    SHEPPARD, CJR
    OPTIK, 1988, 80 (02): : 53 - 54
  • [44] A survey on super-resolution imaging
    Jing Tian
    Kai-Kuang Ma
    Signal, Image and Video Processing , 2011, 5 : 329 - 342
  • [45] Super-resolution in computational imaging
    Bertero, A
    Boccacci, P
    MICRON, 2003, 34 (6-7) : 265 - 273
  • [46] Death by super-resolution imaging
    Strack, Rita
    NATURE METHODS, 2015, 12 (12) : 1111 - 1111
  • [47] Super-resolution acoustic imaging
    Chen, Wangqiao
    Jiang, Hanbo
    Huang, Xun
    APPLIED PHYSICS LETTERS, 2022, 120 (11)
  • [49] Death by super-resolution imaging
    Rita Strack
    Nature Methods, 2015, 12 : 1111 - 1111
  • [50] Scalable super-resolution imaging
    Ozcelik, Evrim
    Yesiloglu, S. Murat
    Erol, Osman K.
    Temeltas, Hakan
    Kaynak, Okyay
    2006 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS, VOLS 1-6, PROCEEDINGS, 2006, : 3995 - +