W-shaped soliton solutions to the modified Zakharov-Kuznetsov equation of ion-acoustic waves in (3+1)-dimensions arise in a magnetized plasma

被引:6
|
作者
Nabi, Harivan R. [1 ]
Ismael, Hajar F. [2 ]
Shah, Nehad Ali [3 ]
Weera, Wajaree [4 ]
机构
[1] Duhok Polytech Univ, Tech Coll Engn, Dept Highway & Bridges Engn, Duhok 42001, Iraq
[2] Univ Zakho, Fac Sci, Dept Math, Zakho 42002, Iraq
[3] Sejong Univ, Dept Mech Engn, Seoul 05006, South Korea
[4] Khon Kaen Univ, Fac Sci, Dept Math, Khon Kaen 40002, Thailand
来源
AIMS MATHEMATICS | 2023年 / 8卷 / 02期
关键词
W-shaped; modified ZK equation; exact solutions; analytical methods; NONLINEAR SCHRODINGER-EQUATION; EXPANSION;
D O I
10.3934/math.2023222
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper is presented to investigate the exact solutions to the modified ZakharovKuznetsov equation that have a critical role to play in mathematical physics. The tan (phi (zeta) /2)expansion, (m + G '(zeta)/G(zeta))-expansion and He exponential function methods are used to reveal various analytical solutions of the model. The equation regulates the treatment of weakly nonlinear ion-acoustic waves in a plasma consisting of cold ions and hot isothermal electrons throughout the existence of a uniform magnetic field. Solutions in forms of W-shaped, singular, periodic-bright and bright are constructed.
引用
收藏
页码:4467 / 4486
页数:20
相关论文
共 50 条
  • [21] CHARACTERISTIC OF ION-ACOUSTIC WAVES DESCRIBED IN THE SOLUTIONS OF THE (3+1)-DIMENSIONAL GENERALIZED KORTEWEG-DE VRIES-ZAKHAROV-KUZNETSOV EQUATION
    Mahmud, Adnan Ahmad
    Tanriverdi, Tanfer
    Muhamad, Kalsum Abdulrahman
    Baskonus, Haci Mehmet
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTATIONAL MECHANICS, 2023, 22 (02) : 36 - 48
  • [22] Analytical solutions for the (3+1)-dimensional nonlinear extended quantum Zakharov-Kuznetsov equation in plasma physics
    Ali, Karmina K.
    Yilmazer, Resat
    Yokus, Asif
    Bulut, Hasan
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2020, 548
  • [23] Soliton solutions for a (3+1)-dimensional modified Korteweg-de Vries-Zakharov-Kuznetsov equation in a plasma
    Sun, Yan
    Tian, Bo
    Zhen, Hui-Ling
    Wu, Xiao-Yu
    Xie, Xi-Yang
    MODERN PHYSICS LETTERS B, 2016, 30 (20):
  • [24] Nonlinear Zakharov-Kuznetsov equation for obliquely propagating two-dimensional ion-acoustic solitary waves in a relativistic, rotating magnetized electron-positron-ion plasma
    Mushtaq, A
    Shah, HA
    PHYSICS OF PLASMAS, 2005, 12 (07) : 1 - 8
  • [25] NONLINEAR DYNAMIC BEHAVIORS OF THE FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV-KUZNETSOV EQUATION
    Wang, Kang-Jia
    Xu, Peng
    Shi, Feng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023,
  • [26] NONLINEAR DYNAMIC BEHAVIORS OF THE FRACTIONAL (3+1)-DIMENSIONAL MODIFIED ZAKHAROV-KUZNETSOV EQUATION
    Wang, Kang-Jia
    Xu, Peng
    Shi, Feng
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2023, 31 (07)
  • [27] Solution of the Perturbed Zakharov-Kuznetsov (ZK) Equation Describing Electron-Acoustic Solitary Waves in a Magnetized Plasma
    Elwakil, S. A.
    El-Shewy, E. K.
    Abdelwahed, H. G.
    CHINESE JOURNAL OF PHYSICS, 2011, 49 (03) : 732 - 744
  • [28] Soliton-like solutions and chaotic motions for a forced and damped Zakharov-Kuznetsov equation in a magnetized electron-positron-ion plasma
    Zhen, Hui-Ling
    Tian, Bo
    Liu, De-Yin
    Liu, Lei
    Jiang, Yan
    JOURNAL OF PLASMA PHYSICS, 2015, 81
  • [29] Solutions of Zakharov-Kuznetsov equation with power law nonlinearity in (1+3) dimensions
    Matebese, B. T.
    Adem, A. R.
    Khalique, C. M.
    Biswas, A.
    PHYSICS OF WAVE PHENOMENA, 2011, 19 (02) : 148 - 154
  • [30] Solutions of Zakharov-Kuznetsov equation with power law nonlinearity in (1+3) dimensions
    B. T. Matebese
    A. R. Adem
    C. M. Khalique
    A. Biswas
    Physics of Wave Phenomena, 2011, 19 : 148 - 154