Preparation of 3D printed calcium sulfate filled PLA scaffolds with improved mechanical and degradation properties

被引:12
|
作者
Ansari, Mohammad Aftab Alam [1 ,2 ]
Jain, Prashant Kumar [2 ]
Nanda, Himansu Sekhar [1 ,3 ,4 ]
机构
[1] PDPM Indian Inst Informat Technol Design & Mfg Jab, Biomed Engn & Technol Lab, Mech Engn Discipline, Jabalpur, Madhya Pradesh, India
[2] PDPM Indian Inst Informat Technol Design & Mfg Jab, Fused Filament Fabricat Lab, Mech Engn Discipline, Jabalpur, Madhya Pradesh, India
[3] Terasaki Inst Biomed Innovat TIBI, Los Angeles, CA USA
[4] PDPM Indian Inst Informat Technol Design & Mfg Jab, Biomed Engn & Technol Lab, Mech Engn Discipline, Jabalpur 482005, Madhya Pradesh, India
关键词
Composite filament; fused filament fabrication; 3D printing; porous scaffolds; mechanical strength; degradation; tissue engineering; BIOLOGICAL-PROPERTIES; BONE; PHOSPHATE; CEMENT;
D O I
10.1080/09205063.2023.2167374
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Scaffold is one of the key components for tissue engineering application. Three-dimensional (3D) printing has given a new avenue to the scaffolds design to closely mimic the real tissue. However, material selection has always been a challenge in adopting 3D printing for scaffolds fabrication, especially for hard tissue. The fused filament fabrication technique is one of the economical 3D printing technology available today, which can efficiently fabricate scaffolds with its key features. In the present study, a hybrid polymer-ceramic scaffold has been prepared by combining the benefit of synthetic biodegradable poly (lactic acid) (PLA) and osteoconductive calcium sulphate (CaS), to harness the advantage of both materials. Composite PLA filament with maximum ceramic loading of 40 wt% was investigated for its printability and subsequently scaffolds were 3D printed. The composite filament was extruded at a temperature of 160 degrees C at a constant speed with an average diameter of 1.66 +/- 0.34 mm. PLA-CaS scaffold with ceramic content of 10%, 20%, and 40% was 3D printed with square pore geometry. The developed scaffolds were characterized for their thermal stability, mechanical, morphological, and geometrical accuracy. The mechanical strength was improved by 29% at 20 wt% of CaS. The porosity was found to be 50-60% with an average pore size of 550 mu m with well-interconnected pores. The effect of CaS particles on the degradation behaviour of scaffolds was also assessed over an incubation period of 28 days. The CaS particles acted as porogen and improved the surface chemistry for future cellular activity, while accelerating the degradation rate.
引用
收藏
页码:1408 / 1429
页数:22
相关论文
共 50 条
  • [21] The effect of calcium sulfate incorporation on physiochemical and biological properties of 3D-printed mesoporous calcium silicate cement scaffolds
    Pei, Peng
    Wei, Daixu
    Zhu, Min
    Du, Xiaoyu
    Zhu, Yufang
    MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 241 : 11 - 20
  • [22] Modelling and optimization of compressive strength of 3D printed PLA scaffolds for biomedical applications
    Gonzalez Gonzalez, Alejandro
    Rivas Santana, Marcelino
    Zambrano Robledo, Patricia de Carmen
    Quiza, Ramon
    MRS ADVANCES, 2022, 7 (35) : 1212 - 1217
  • [23] Effect of in vitro enzymatic degradation on 3D printed poly(ε-caprolactone) scaffolds: morphological, chemical and mechanical properties
    Ferreira, Joana
    Gloria, Antonio
    Cometa, Stefania
    Coelho, Jorge F. J.
    Domingos, Marco
    JOURNAL OF APPLIED BIOMATERIALS & FUNCTIONAL MATERIALS, 2017, 15 (03): : E185 - E195
  • [24] Processing and properties of PLA/Mg filaments for 3D printing of scaffolds for biomedical applications
    Pascual-Gonzalez, Cristina
    Thompson, Cillian
    de la Vega, Jimena
    Biurrun Churruca, Nicolas
    Fernandez-Blazquez, Juan P.
    Lizarralde, Iker
    Herraez-Molinero, Diego
    Gonzalez, Carlos
    LLorca, Javier
    RAPID PROTOTYPING JOURNAL, 2022, 28 (05) : 884 - 894
  • [25] 3D printed PLA-based scaffolds A versatile tool in regenerative medicine
    Serra, Tiziano
    Mateos-Timoneda, Miguel A.
    Planell, Josep A.
    Navarro, Melba
    ORGANOGENESIS, 2013, 9 (04) : 239 - 244
  • [26] 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds
    Nicholas W. Pensa
    Andrew S. Curry
    Paul P. Bonvallet
    Nathan F. Bellis
    Kayla M. Rettig
    Michael S. Reddy
    Alan W. Eberhardt
    Susan L. Bellis
    Biomaterials Research, 23
  • [27] 3D printed mesh reinforcements enhance the mechanical properties of electrospun scaffolds
    Pensa, Nicholas W.
    Curry, Andrew S.
    Bonvallet, Paul P.
    Bellis, Nathan F.
    Rettig, Kayla M.
    Reddy, Michael S.
    Eberhardt, Alan W.
    Bellis, Susan L.
    BIOMATERIALS RESEARCH, 2019, 23 (01)
  • [28] Biomolecule-grafted GO enhanced the mechanical and biological properties of 3D printed PLA scaffolds with TPMS porous structure
    Ye, Xiaotong
    Wang, Enyu
    Huang, Yanjian
    Zhang, Tianwen
    You, Hui
    Long, Yu
    Guo, Wang
    Liu, Bin
    Wang, Shan
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2024, 157
  • [29] Gene-activation of surface-modified 3D printed calcium phosphate scaffolds
    Laird, Noah Z.
    Phruttiwanichakun, Pornpoj
    Mohamed, Esraa
    Acri, Timothy M.
    Jaidev, Leela R.
    Salem, Aliasger K.
    BMC CHEMISTRY, 2025, 19 (01)
  • [30] Experimental evaluation of the mechanical and thermal properties of 3D printed PLA and its composites
    Vinyas, M.
    Athul, S. J.
    Harursampath, D.
    Thoi, T. Nguyen
    MATERIALS RESEARCH EXPRESS, 2019, 6 (11)