A New Drought Monitoring Index on the Tibetan Plateau Based on Multisource Data and Machine Learning Methods

被引:10
|
作者
Cheng, Meilin [1 ]
Zhong, Lei [1 ,2 ,3 ,4 ]
Ma, Yaoming [5 ,6 ,7 ,8 ,9 ,10 ]
Wang, Xian [1 ]
Li, Peizhen [1 ]
Wang, Zixin [1 ]
Qi, Yuting [1 ]
机构
[1] Univ Sci & Technol China, Sch Earth & Space Sci, Hefei 230026, Peoples R China
[2] CAS Ctr Excellence Comparat Planetol, Hefei 230026, Peoples R China
[3] Jiangsu Collaborat Innovat Ctr Climate Change, Nanjing 210023, Peoples R China
[4] Univ Sci & Technol China, Frontiers Sci Ctr Planetary Explorat & Emerging Te, Hefei 230026, Peoples R China
[5] Chinese Acad Sci, Inst Tibetan Plateau Res, State Key Lab Tibetan Plateau Earth Syst Resources, Land Atmosphere Interact & Its Climat Effects Grp, Beijing 100101, Peoples R China
[6] Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing 100049, Peoples R China
[7] Lanzhou Univ, Coll Atmospher Sci, Lanzhou 730000, Peoples R China
[8] Natl Observat & Res Stn Qomolongma Special Atmosph, Dingri 858200, Peoples R China
[9] Chinese Acad Sci, Kathmandu Ctr Res & Educ, Beijing 100101, Peoples R China
[10] Chinese Acad Sci, China Pakistan Joint Res Ctr Earth Sci, Islamabad 45320, Pakistan
基金
中国国家自然科学基金;
关键词
drought monitoring; machine learning method; Tibetan Plateau; SOIL-MOISTURE; AGRICULTURAL DROUGHT; TEMPERATURE; SATELLITE; SEVERITY; CHINA;
D O I
10.3390/rs15020512
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Drought is a major disaster over the Tibetan Plateau (TP) that exerts great impacts on natural ecosystems and agricultural production. Furthermore, most drought indices are only useful for assessing drought conditions on a coarse temporal scale. Drought indices that describe drought evolution at a fine temporal scale are still scarce. In this study, four machine learning methods, including random forest regression (RFR), k-nearest neighbor regression (KNNR), support vector regression (SVR), and extreme gradient boosting regression (XGBR), were used to construct daily drought indices based on multisource remote sensing and reanalysis data. Through comparison with in situ soil moisture (SM) over the TP, our results indicate that the drought index based on the XGBR model outperforms other models (R-2 = 0.76, RMSE = 0.11, MAE = 0.08), followed by RFR (R-2 = 0.74, RMSE = 0.11, MAE = 0.08), KNNR (R-2 = 0.73, RMSE = 0.11, MAE = 0.08) and SVR (R-2 = 0.66, RMSE = 0.12, MAE = 0.1). A new daily drought index, the standardized integrated drought index (SIDI), was developed by the XGBR model for monitoring agricultural drought. A comparison with ERA5-Land SM and widely used indices such as SPI-6 and SPEI-6 indicated that the SIDI depicted the dry and wet change characteristics of the plateau well. Furthermore, the SIDI was applied to analyze a typical drought event and reasonably characterize the spatiotemporal patterns of drought evolution, demonstrating its capability and superiority for drought monitoring over the TP. In addition, soil properties accounted for 59.5% of the model output, followed by meteorological conditions (35.8%) and topographic environment (4.7%).
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Start of vegetation growing season on the Tibetan Plateau inferred from multiple methods based on GIMMS and SPOT NDVI data
    Ding Mingjun
    Li Lanhui
    Zhang Yili
    Sun Xiaomin
    Liu Linshan
    Gao Jungang
    Wang Zhaofeng
    Li Yingnian
    JOURNAL OF GEOGRAPHICAL SCIENCES, 2015, 25 (02) : 131 - 148
  • [42] Deep Learning for Monitoring Agricultural Drought in South Asia Using Remote Sensing Data
    Prodhan, Foyez Ahmed
    Zhang, Jiahua
    Yao, Fengmei
    Shi, Lamei
    Pangali Sharma, Til Prasad
    Zhang, Da
    Cao, Dan
    Zheng, Minxuan
    Ahmed, Naveed
    Mohana, Hasiba Pervin
    REMOTE SENSING, 2021, 13 (09)
  • [43] Spatial Gap-Filling of SMAP Soil Moisture Pixels Over Tibetan Plateau via Machine Learning Versus Geostatistics
    Tong, Cheng
    Wang, Hongquan
    Magagi, Ramata
    Goita, Kalifa
    Wang, Ke
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 9899 - 9912
  • [44] Flash Drought: Review of Concept, Prediction and the Potential for Machine Learning, Deep Learning Methods
    Tyagi, Shoobhangi
    Zhang, Xiang
    Saraswat, Dharmendra
    Sahany, Sandeep
    Mishra, Saroj Kanta
    Niyogi, Dev
    EARTHS FUTURE, 2022, 10 (11)
  • [45] A review of machine learning methods for drought hazard monitoring and forecasting: Current research trends, challenges, and future research directions
    Prodhan, Foyez Ahmed
    Zhang, Jiahua
    Hasan, Shaikh Shamim
    Sharma, Til Prasad Pangali
    Mohana, Hasiba Pervin
    ENVIRONMENTAL MODELLING & SOFTWARE, 2022, 149
  • [46] Comprehensive drought monitoring in Yunnan Province, China using multisource remote sensing data
    Jin-liang Wang
    Yuan-he Yu
    Journal of Mountain Science, 2021, 18 : 1537 - 1549
  • [47] Drought monitoring based on a new combined remote sensing index across the transitional area between humid and arid regions in China
    Zhang, Yu
    Liu, Xiaohong
    Jiao, Wenzhe
    Zeng, Xiaomin
    Xing, Xiaoyu
    Zhang, Lingnan
    Yan, Jianwu
    Hong, Yixue
    ATMOSPHERIC RESEARCH, 2021, 264
  • [48] Retrieving Accurate Soil Moisture over the Tibetan Plateau Using Multisource Remote Sensing Data Assimilation with Simultaneous State and Parameter Estimations
    Chen, Weijing
    Huang, Chunlin
    Yang, Zong-Liang
    Zhang, Ying
    JOURNAL OF HYDROMETEOROLOGY, 2021, 22 (10) : 2751 - 2766
  • [49] Assessing the soil moisture drought index for agricultural drought monitoring based on green vegetation fraction retrieval methods
    Wu, Rongjun
    Li, Qi
    NATURAL HAZARDS, 2021, 108 (01) : 499 - 518
  • [50] Assessing the soil moisture drought index for agricultural drought monitoring based on green vegetation fraction retrieval methods
    Rongjun Wu
    Qi Li
    Natural Hazards, 2021, 108 : 499 - 518