Design and analysis antennas of transverse polarization on the dielectric waveguide

被引:1
作者
Shaaban, Mohamed N. [1 ]
Nasybullin, Aydar R. [2 ]
Sedelnikov, Yuri E. [2 ]
机构
[1] Al Azhar Univ, Fac Engn, Elect Engn Dept, Qena 83513, Egypt
[2] Kazan Natl Res Tech Univ, Inst Radio Elect Photon & Digital Technol, Kazan, Russia
关键词
Dielectric waveguides; Leaky-wave antennas; Periodic structures; Grooved dielectric waveguide; Antenna arrays; Quarter-wavelength pins; Millimeter waveband; SINGLE-LAYER; ARRAY; COMPACT;
D O I
10.1186/s13638-024-02342-y
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper addresses the issue of constructing millimeter band antennas using dielectric waveguide structures. A new type of linear antenna, incorporating metal pins on the side walls of the grooved dielectric waveguide, is proposed for generating polarization perpendicular to the waveguide axis. However, these antennas suffer from the drawback of cross-polarized radiation in directions close to the waveguide axis. To overcome this limitation, a modified antenna design with transverse polarization is introduced, featuring a closed groove waveguide with a longitudinal slot at the top of the wall. The paper provides a comparison between two types of dielectric waveguide antennas: first, waveguide antenna with grooves in the dielectric which results in longitudinal polarization, and second, waveguide antenna with quarter-wavelength pins which results in transverse polarization. Electrodynamic modeling data are provided to demonstrate the effectiveness of the proposed antennas for satellite, 5G antenna, and radar applications. Finally, an antenna of quarter-wavelength pins is proposed with a frequency of 39 GHz, a gain of 19.8 dBi, and a width of the radiation pattern of 3.2 circle \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{\circ }$$\end{document} , and a sidelobe level (SLL) of -13.3 dB has been achieved.
引用
收藏
页数:17
相关论文
共 69 条
[1]  
Abood Mohammed Salah, 2023, Journal of Artificial Intelligence and Technology, V3, P75
[2]   Compact and Sensitive H-Shaped Metal-Dielectric-Metal Waveguide Plasmonic Sensor [J].
Adhikari, Rammani ;
Sbeah, Zen ;
Gupta, Rahul ;
Chauhan, Diksha ;
Nunzi, Jean-Michel ;
Prakash Dwivedi, Ram .
PLASMONICS, 2022, 17 (04) :1593-1606
[3]  
Agrawal Meha, 2022, Evolution in Signal Processing and Telecommunication Networks: Proceedings of Sixth International Conference on Microelectronics, Electromagnetics and Telecommunications (ICMEET 2021). Lecture Notes in Electrical Engineering (839), P115, DOI 10.1007/978-981-16-8554-5_12
[4]   Recent Developments and Challenges on Beam Steering Characteristics of Reconfigurable Transmitarray Antennas [J].
Ali, Qasim ;
Shahzad, Waseem ;
Ahmad, Iftikhar ;
Safiq, Shozab ;
Bin, Xi ;
Abbas, Syed Muzahir ;
Sun, Houjun .
ELECTRONICS, 2022, 11 (04)
[5]   A novel plasmonic waveguide for the dual-band transmission of spoof surface plasmon polaritons [J].
Aziz, Asad ;
Aziz, Arsalan .
EUROPEAN PHYSICAL JOURNAL PLUS, 2022, 137 (05)
[6]   From Massive IoT Toward IoE: Evolution of Energy Efficient Autonomous Wireless Networks [J].
Babbar H. ;
Rani S. ;
Bouachir O. ;
Aloqaily M. .
IEEE Communications Standards Magazine, 2023, 7 (02) :32-39
[7]  
Bauer M, 2021, EUR MICROW CONF, P805
[8]   A survey on increasing the capacity of 5G Fronthaul systems using RoF [J].
Bismi, B. S. ;
Azeem, Saniya .
OPTICAL FIBER TECHNOLOGY, 2022, 74
[9]   Design of Dual-Stopband Rectangular Waveguide Slot Array Antennas [J].
Chen, Xuemeng ;
Li, Hongji ;
Liang, Xianling ;
Zhang, Xiaohan ;
Jin, Ronghong ;
Xia, Cunjuan ;
Su, Yuezeng .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2023, 71 (05) :3905-3915
[10]   Low-Profile VHF Antenna Based on Quarter-Mode Substrate-Integrated Waveguide Structure [J].
Chung, Jae-Young ;
Yih, Geown .
APPLIED SCIENCES-BASEL, 2022, 12 (18)