The proper homotopy of Alexandroff spaces

被引:0
|
作者
Fernandez-Bayort, Tomas [1 ]
Luque, Alvaro [2 ]
Quintero, Antonio [2 ]
机构
[1] Inst Pablo Neruda, Dept Matemat, C Manuel Rodriguez Navarro 4, Seville 41950, Spain
[2] Univ Seville, Fac Matemat, Dept Geometria & Topol, Apartado 1160, Seville 41080, Spain
关键词
Proper homotopy; locally finite spaces; proper inverse limit;
D O I
10.2989/16073606.2024.2323159
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper introduces the study of the infinity in the class of Alexandroff spaces by establishing the proper category of locally finite Alexandroff spaces. We observe that the McCord and Clader theorems are available in this setting. The paper can be considered as the starting point of a seemingly new research: relating the combinatorics and topology of the proper category of Alexandroff spaces to the proper invariants used in the geometric topology of non-compact polyhedra and manifolds.
引用
收藏
页码:1413 / 1428
页数:16
相关论文
共 50 条
  • [21] Two homotopy characterizations of G-ANR spaces for proper actions of Lie groups
    Antonyan, Sergey A.
    Mata-Romero, Armando
    Vargas-Betancourt, Enrique
    TOPOLOGY AND ITS APPLICATIONS, 2023, 340
  • [22] The Alexandroff dimension of digital quotients of Euclidean spaces
    Wiederhold, P
    Wilson, RG
    DISCRETE & COMPUTATIONAL GEOMETRY, 2002, 27 (02) : 273 - 286
  • [23] On some topological properties in the class of Alexandroff spaces
    LAZAAR, Sami
    SABRI, Houssem
    TAHRI, Randa
    TURKISH JOURNAL OF MATHEMATICS, 2021, 45 (01) : 479 - 486
  • [24] Alexandroff and Scott topologies for generalized metric spaces
    Bonsangue, MM
    VanBreugel, F
    Rutten, JJMM
    PAPERS ON GENERAL TOPOLOGY AND APPLICATIONS: ELEVENTH SUMMER CONFERENCE AT THE UNIVERSITY OF SOUTHERN MAINE, 1996, 806 : 49 - 68
  • [25] Proper homotopy types and Z-boundaries of spaces admitting geometric group actions
    Guilbault, Craig R.
    Moran, Molly A.
    EXPOSITIONES MATHEMATICAE, 2019, 37 (03) : 292 - 313
  • [26] EVERY WEAK PROPER HOMOTOPY EQUIVALENCE IS WEAKLY PROPERLY HOMOTOPIC TO A PROPER HOMOTOPY EQUIVALENCE
    EDWARDS, DA
    HASTINGS, HM
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 221 (01) : 239 - 248
  • [27] Alexandroff L-co-topological spaces
    Chen, Piwei
    Zhang, Dexue
    FUZZY SETS AND SYSTEMS, 2010, 161 (18) : 2505 - 2514
  • [28] The Small Inductive Dimension of Subsets of Alexandroff Spaces
    Chatyrko, Vitalij A.
    Han, Sang-Eon
    Hattori, Yasunao
    FILOMAT, 2016, 30 (11) : 3007 - 3014
  • [29] PROPER HOMOTOPY CLASSIFICATION OF GRAPHS
    AYALA, R
    DOMINGUEZ, E
    MARQUEZ, A
    QUINTERO, A
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1990, 22 : 417 - 421
  • [30] The autohomeomorphism group of connected homogeneous functionally Alexandroff spaces
    Lazaar, Sami
    Richmond, Tom
    Sabri, Houssem
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (09) : 3818 - 3829