Bimetallic AuNR@AgNCs for ultrasensitive surface-enhanced Raman scattering sensing of dithianon in apple juice

被引:5
|
作者
Zheng, Kaiyi [1 ]
Shen, Ye [1 ]
Chen, Zhiyang [1 ]
Zhao, Lina [1 ]
Li, Zhihua [1 ]
Huang, Xiaowei [1 ]
Shi, Jiyong [1 ]
Zhang, Yang [1 ]
Xu, Xuechao [2 ]
Zhu, Zitao [2 ]
Jiang, Zhaoqiong [4 ]
Zhang, Meng [3 ]
Zou, Xiaobo [1 ]
机构
[1] Jiangsu Univ, Sch Food & Biol Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Yangzhou Univ, Sch Food Sci & Engn, Yangzhou 225127, Jiangsu, Peoples R China
[3] East China Univ Sci & Technol, Dept Phys, Shanghai 200237, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab Agr Equipment Technol Hilly & Mountainous, Chengdu 610066, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
SERS; AuNR@AgNCs; Core-shell nanocuboid; Dithianon; Density functional theory; DEGRADATION;
D O I
10.1016/j.aca.2023.342199
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, a bimetallic surfaced -enhanced Raman spectroscopy (SERS)-active substrate consisting of AuNR@AgNCs was proposed for the rapid detection of dithianon. Due to the significant synergistic enhancement of the core -shell nanocuboids, the obtained AuNR@AgNC substrate exhibited excellent SERS performance. The simulation findings supported the practical SERS results and demonstrated that interactions were mainly maintained by the nitrile functional group. The AuNR@AgNCs could be used to detect dithianon with an LOD value of 20 nM. Moreover, dithianon in river water and apple juice could be detected with recovery in the satisfactory ranges of 97.41%-98.35% and 97.77%-98.70%, respectively, by using this substrate under optimal conditions, indicating that the AuNR@AgNC substrate could serve as an excellent SERS detection platform for pesticide residues in fruit.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Evaluation of the intrinsic pH sensing performance of surface-enhanced Raman scattering pH probes
    Huang, Yuting
    Liu, Wen
    Wang, Dongmei
    Gong, Zhengjun
    Fan, Meikun
    MICROCHEMICAL JOURNAL, 2020, 154
  • [22] A Review on Surface-Enhanced Raman Scattering
    Pilot, Roberto
    Signorini, Raffaella
    Durante, Christian
    Orian, Laura
    Bhamidipati, Manjari
    Fabris, Laura
    BIOSENSORS-BASEL, 2019, 9 (02):
  • [23] Surface-enhanced Raman scattering of λ -DNA
    H. Wei
    H. Xu
    Applied Physics A, 2007, 89
  • [24] The theory of surface-enhanced Raman scattering
    Lombardi, John R.
    Birke, Ronald L.
    JOURNAL OF CHEMICAL PHYSICS, 2012, 136 (14)
  • [25] Surface-enhanced Raman scattering of hydroxyproline
    Guerrero, Ariel R.
    Aroca, Ricardo F.
    JOURNAL OF RAMAN SPECTROSCOPY, 2012, 43 (04) : 478 - 481
  • [26] The discovery of surface-enhanced Raman scattering
    McQuillan, A. James
    NOTES AND RECORDS OF THE ROYAL SOCIETY, 2009, 63 (01): : 105 - 109
  • [27] Surface-enhanced Raman scattering of flavonoids
    Jurasekova, Z.
    Garcia-Ramos, J. V.
    Domingo, C.
    Sanchez-Cortes, S.
    JOURNAL OF RAMAN SPECTROSCOPY, 2006, 37 (11) : 1239 - 1241
  • [28] Nanocrystalline graphene for ultrasensitive surface-enhanced Raman spectroscopy
    Faggio, Giuliana
    Grillo, Rossella
    Lisi, Nicola
    Buonocore, Francesco
    Chierchia, Rosa
    Kim, Min Jung
    Lee, Gwan-Hyoung
    Capasso, Andrea
    Messina, Giacomo
    APPLIED SURFACE SCIENCE, 2022, 599
  • [29] Spontaneous Raman and Surface-Enhanced Raman Scattering Bioimaging
    Lin, Li
    Ye, Jian
    OPTICAL IMAGING IN HUMAN DISEASE AND BIOLOGICAL RESEARCH, 2021, 1355 : 177 - 195
  • [30] Surface-enhanced Raman scattering-active AuNR array cellulose fi lms for multi-hazard detection
    Kim, Dabum
    Gwon, Goomin
    Lee, Gangyoon
    Jeon, Youngho
    Kim, Ung-Jin
    Alothman, Zeid A.
    You, Jungmok
    JOURNAL OF HAZARDOUS MATERIALS, 2021, 402