Real-time machine learning model to predict short-term mortality in critically ill patients: development and international validation

被引:4
|
作者
Lim, Leerang [1 ]
Gim, Ukdong [2 ]
Cho, Kyungjae [2 ]
Yoo, Dongjoon [2 ,3 ]
Ryu, Ho Geol [1 ,4 ]
Lee, Hyung-Chul [1 ]
机构
[1] Seoul Natl Univ, Coll Med, Seoul Natl Univ Hosp, Dept Anesthesiol & Pain Med, 101 Daehak Ro, Seoul 03080, South Korea
[2] VUNO, 479 Gangnam Daero, Seoul 06541, South Korea
[3] Inha Univ, Dept Crit Care Med & Emergency Med, Coll Med, 100 Inha Ro, Incheon 22212, South Korea
[4] Seoul Natl Univ, Coll Med, Dept Crit Care Med, Seoul Natl Univ Hosp, 101 Daehak Ro, Seoul 03080, South Korea
关键词
Intensive care units; Machine learning; Mortality; Prediction model; Validation study; CARDIAC-ARREST; ICU; SCORE;
D O I
10.1186/s13054-024-04866-7
中图分类号
R4 [临床医学];
学科分类号
1002 ; 100602 ;
摘要
Background A real-time model for predicting short-term mortality in critically ill patients is needed to identify patients at imminent risk. However, the performance of the model needs to be validated in various clinical settings and ethnicities before its clinical application. In this study, we aim to develop an ensemble machine learning model using routinely measured clinical variables at a single academic institution in South Korea. Methods We developed an ensemble model using deep learning and light gradient boosting machine models. Internal validation was performed using the last two years of the internal cohort dataset, collected from a single academic hospital in South Korea between 2007 and 2021. External validation was performed using the full Medical Information Mart for Intensive Care (MIMIC), eICU-Collaborative Research Database (eICU-CRD), and Amsterdam University Medical Center database (AmsterdamUMCdb) data. The area under the receiver operating characteristic curve (AUROC) was calculated and compared to that for the National Early Warning Score (NEWS). Results The developed model (iMORS) demonstrated high predictive performance with an internal AUROC of 0.964 (95% confidence interval [CI] 0.963-0.965) and external AUROCs of 0.890 (95% CI 0.889-0.891) for MIMIC, 0.886 (95% CI 0.885-0.887) for eICU-CRD, and 0.870 (95% CI 0.868-0.873) for AmsterdamUMCdb. The model outperformed the NEWS with higher AUROCs in the internal and external validation (0.866 for the internal, 0.746 for MIMIC, 0.798 for eICU-CRD, and 0.819 for AmsterdamUMCdb; p < 0.001). Conclusions Our real-time machine learning model to predict short-term mortality in critically ill patients showed excellent performance in both internal and external validations. This model could be a useful decision-support tool in the intensive care units to assist clinicians.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Development and validation of the creatinine clearance predictor machine learning models in critically ill adults
    Chao-Yuan Huang
    Fabian Güiza
    Pieter Wouters
    Liese Mebis
    Giorgia Carra
    Jan Gunst
    Philippe Meersseman
    Michael Casaer
    Greet Van den Berghe
    Greet De Vlieger
    Geert Meyfroidt
    Critical Care, 27
  • [42] Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
    Mamandipoor, Behrooz
    Frutos-Vivar, Fernando
    Penuelas, Oscar
    Rezar, Richard
    Raymondos, Konstantinos
    Muriel, Alfonso
    Du, Bin
    Thille, Arnaud W.
    Rios, Fernando
    Gonzalez, Marco
    del-Sorbo, Lorenzo
    del Carmen Marin, Maria
    Pinheiro, Bruno Valle
    Soares, Marco Antonio
    Nin, Nicolas
    Maggiore, Salvatore M.
    Bersten, Andrew
    Kelm, Malte
    Bruno, Raphael Romano
    Amin, Pravin
    Cakar, Nahit
    Suh, Gee Young
    Abroug, Fekri
    Jibaja, Manuel
    Matamis, Dimitros
    Zeggwagh, Amine Ali
    Sutherasan, Yuda
    Anzueto, Antonio
    Wernly, Bernhard
    Esteban, Andres
    Jung, Christian
    Osmani, Venet
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [43] Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
    Behrooz Mamandipoor
    Fernando Frutos-Vivar
    Oscar Peñuelas
    Richard Rezar
    Konstantinos Raymondos
    Alfonso Muriel
    Bin Du
    Arnaud W. Thille
    Fernando Ríos
    Marco González
    Lorenzo del-Sorbo
    Maria del Carmen Marín
    Bruno Valle Pinheiro
    Marco Antonio Soares
    Nicolas Nin
    Salvatore M. Maggiore
    Andrew Bersten
    Malte Kelm
    Raphael Romano Bruno
    Pravin Amin
    Nahit Cakar
    Gee Young Suh
    Fekri Abroug
    Manuel Jibaja
    Dimitros Matamis
    Amine Ali Zeggwagh
    Yuda Sutherasan
    Antonio Anzueto
    Bernhard Wernly
    Andrés Esteban
    Christian Jung
    Venet Osmani
    BMC Medical Informatics and Decision Making, 21
  • [44] Short-term mortality prediction using a combination of clinical and CT features: Refining the prognosis of critically ill patients in shock
    Hassoun, Youness
    Konan, Anhum
    Simon, Gabriel
    Verdot, Pierre
    Lakkis, Zaher
    Loffroy, Romaric
    Besch, Guillaume
    Piton, Gael
    Delabrousse, Eric
    Calame, Paul
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 167
  • [45] Delirium Mediated the Association Between a History of Falls and Short-Term Mortality Risk in Critically Ill Ischemic Stroke Patients
    Cheng, Hongtao
    Xu, Xiaozhen
    Tang, Yonglan
    Yang, Xin
    Ling, Yitong
    Tan, Shanyuan
    Wang, Zichen
    Ming, Wai-kit
    Lyu, Jun
    CLINICAL NURSING RESEARCH, 2024, 33 (07) : 545 - 559
  • [46] Prognostic value of glycaemic variability for mortality in critically ill atrial fibrillation patients and mortality prediction model using machine learning
    Chen, Yang
    Yang, Zhengkun
    Liu, Yang
    Gue, Ying
    Zhong, Ziyi
    Chen, Tao
    Wang, Feifan
    Mcdowell, Garry
    Huang, Bi
    Lip, Gregory Y. H.
    CARDIOVASCULAR DIABETOLOGY, 2024, 23 (01)
  • [47] Development of a prediction model for long-term quality of life in critically ill patients
    Oeyen, Sandra
    Vermeulen, Karel
    Benoit, Dominique
    Annemans, Lieven
    Decruyenaere, Johan
    JOURNAL OF CRITICAL CARE, 2018, 43 : 133 - 138
  • [48] Machine learning to predict 30-day quality-adjusted survival in critically ill patients with cancer
    dos Santos, Hellen Geremias
    Zampieri, Fernando Godinho
    Normilio-Silva, Karina
    da Silva, Gisela Tunes
    Pedroso de Lima, Antonio Carlos
    Cavalcanti, Alexandre Biasi
    Porto Chiavegatto Filho, Alexandre Dias
    JOURNAL OF CRITICAL CARE, 2020, 55 : 73 - 78
  • [49] Rhythmical and Periodic EEG Patterns Do Not Predict Short-term Outcome in Critically Ill Patients With Subarachnoid Hemorrhage
    Crepeau, Amy Z.
    Kerrigan, John F.
    Gerber, Paula
    Parikh, Gunjan
    Jahnke, Heidi
    Nakaji, Peter
    Little, Andrew
    Chapmank, Kevin E.
    JOURNAL OF CLINICAL NEUROPHYSIOLOGY, 2013, 30 (03) : 247 - 254
  • [50] Real-time multi-state classification of short-term voltage stability based on multivariate time series machine learning
    Pinzon, Jaime D.
    Graciela Colome, D.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2019, 108 : 402 - 414