Quantifying Heart Rate Variability Using Multiscale Fuzzy Dispersion Entropy

被引:1
|
作者
Kim, Chae-Min [1 ]
Choi, Young-Seok [1 ]
机构
[1] Kwangwoon Univ, Dept Elect & Commun Engn, Seoul 01897, South Korea
关键词
Entropy; Heart rate variability; Time series analysis; Dispersion; Complexity theory; Electrocardiography; Physiology; Fuzzy systems; RR intervals; complexity; multiscale fuzzy dispersion entropy; COMPLEXITY ANALYSIS;
D O I
10.1109/ACCESS.2024.3369689
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Heart rate variability (HRV), which is the variation of inter-beat intervals, exhibits complex characteristics on multiple temporal scales due to the balancing function of the autonomic nervous system. Although there are various nonlinear analysis methods for assessing the complexity of HRV, quantifying HRV over multiple scales is lacking. Here, we present a novel multiscale fuzzy dispersion entropy (MFDE) measure that incorporates quantifying fuzzy dispersion entropy over multiple temporal scales. The proposed MFDE comprises two steps: First, a coarse-graining procedure is carried out for the multiscale decomposition of an inter-beat interval. Second, it conducts FDE computation for each coarse-grained time series. It results in the quantification of complexity, reflecting the long-range correlations inherent in HRV. Using synthetic signals and actual electrocardiogram (ECG), we evaluate the performance of MFDE and compare it to the traditional multiscale entropy methods. The results using synthetic signals show better robustness of MFDE for quantifying complexity with various lengths and predefined parameters. The results using ECGs demonstrate that the proposed MFDE leads to more significant discrimination of HRVs of different cardiovascular states regarding p-values from the Mann-Whitney U test. The capability of MFDE can provide a prospective tool for real-time and practical computer-aided diagnosis using HRV analysis.
引用
收藏
页码:31066 / 31077
页数:12
相关论文
共 50 条
  • [41] Vagally mediated heart rate variability and heart rate entropy as predictors of treatment outcome in flight phobia
    Bornas, Xavier
    Llabres, Jordi
    Tortella-Feliu, Miquel
    Fullana, Miquel A.
    Montoya, Pedro
    Lopez, Ana
    Noguera, Miquel
    Gelabert, Joan M.
    BIOLOGICAL PSYCHOLOGY, 2007, 76 (03) : 188 - 195
  • [42] Exploring total cardiac variability in healthy and pathophysiological subjects using improved refined multiscale entropy
    Marwaha, Puneeta
    Sunkaria, Ramesh Kumar
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2017, 55 (02) : 191 - 205
  • [43] Effect of a Percutaneous Coronary Intervention Procedure on Heart Rate Variability and Pulse Transit Time Variability: A Comparison Study Based on Fuzzy Measure Entropy
    Zhang, Guang
    Liu, Chengyu
    Ji, Lizhen
    Yang, Jing
    Liu, Changchun
    ENTROPY, 2016, 18 (07)
  • [44] Multiscale Transfer Spectral Entropy for Quantifying Corticomuscular Interaction
    Liu, Jinbiao
    Tan, Gansheng
    Sheng, Yixuan
    Liu, Honghai
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2021, 25 (06) : 2281 - 2292
  • [45] Fuzzy Dispersion Entropy: A Nonlinear Measure for Signal Analysis
    Rostaghi, Mostafa
    Khatibi, Mohammad Mahdi
    Ashory, Mohammad Reza
    Azami, Hamed
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2022, 30 (09) : 3785 - 3796
  • [46] Coarse-Graining Approaches in Univariate Multiscale Sample and Dispersion Entropy
    Azami, Hamed
    Escudero, Javier
    ENTROPY, 2018, 20 (02):
  • [47] Multiscale time irreversibility of heart rate and blood pressure variability during orthostasis
    Chladekova, L.
    Czippelova, B.
    Turianikova, Z.
    Tonhajzerova, I.
    Calkovska, A.
    Baumert, M.
    Javorka, M.
    PHYSIOLOGICAL MEASUREMENT, 2012, 33 (10) : 1747 - 1756
  • [48] Evaluation of renormalised entropy for risk stratification using heart rate variability data
    N. Wessel
    A. Voss
    J. Kurths
    A. Schirdewan
    K. Hnatkova
    M. Malik
    Medical and Biological Engineering and Computing, 2000, 38 : 680 - 685
  • [49] Evaluation of renormalised entropy for risk stratification using heart rate variability data
    Wessel, N
    Voss, A
    Kurths, J
    Schirdewan, A
    Hnatkova, K
    Malik, M
    MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 2000, 38 (06) : 680 - 685
  • [50] Block entropy analysis of Heart Rate Variability signals
    Karamanos, K.
    Nikolopoulos, S.
    Hizanidis, K.
    Manis, G.
    Alexandridi, A.
    Nikolakeas, S.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2006, 16 (07): : 2093 - 2101