Automated Generation of ICD-11 Cluster Codes for Precision Medical Record Classification

被引:2
|
作者
Feng, Jiayi [1 ]
Zhang, Runtong [1 ]
Chen, Donghua [2 ]
Shi, Lei [3 ]
Li, Zhaoxing [4 ]
机构
[1] Beijing Jiaotong Univ, Dept Informat Management, 3 Shangyuan Village, Beijing 100044, Peoples R China
[2] Univ Int Business & Econ, Dept Informat Management, 3 Shangyuan Village, Beijing 100044, Peoples R China
[3] Newcastle Univ, Sch Comp, Open Lab, Floor 1,Urban Sci Bldg, Newcastle Upon Tyne NE4 5TG, England
[4] Univ Southampton, Dept Elect & Comp Sci, B32,East Highfield Campus,Univ Rd, Southampton SO17 1BJ, England
基金
中国国家自然科学基金;
关键词
ICD-11; ICD code; machine learning; text similarity; clinical coding; INTERNATIONAL CLASSIFICATION; DISEASES;
D O I
10.15837/ijccc.2024.1.6251
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Accurate clinical coding using the International Classification of Diseases (ICD) standard is essential for healthcare analytics. ICD-11 introduces new coding guidelines and cluster structures, posing challenges for existing coding tools. This research presents an automated approach to generate valid ICD-11 cluster codes from medical text. Natural language records are represented as vectors and compared to an ICD-11 corpus using cosine similarity. A bidirectional matching technique then refines similarity estimation. Experiments demonstrate the method yields up to 0.91 F1 score in coding accuracy, significantly outperforming a baseline tool. This work enables efficient high-quality ICD-11 coding to support healthcare informatics.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Postcoordination of codes in ICD-11
    Kristy Mabon
    Olafr Steinum
    Christopher G. Chute
    BMC Medical Informatics and Decision Making, 21
  • [2] Postcoordination of codes in ICD-11
    Mabon, Kristy
    Steinum, Olafr
    Chute, Christopher G.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 21 (SUPPL 6)
  • [3] ICD-11 extension codes support detailed clinical abstraction and comprehensive classification
    Droesler, Saskia E.
    Weber, Stefanie
    Chute, Christopher G.
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (SUPPL 6)
  • [4] ICD-11 extension codes support detailed clinical abstraction and comprehensive classification
    Saskia E. Drösler
    Stefanie Weber
    Christopher G. Chute
    BMC Medical Informatics and Decision Making, 21
  • [5] The classification of personality disorders in ICD-11
    Schmeck, Klaus
    Birkholzer, Marc
    ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE, 2021, 49 (06): : 480 - 485
  • [6] Application of the ICD-11 classification of personality disorders
    Bo Bach
    Michael B First
    BMC Psychiatry, 18
  • [7] The novel and powerful ICD-11 classification system for neoplasm coding: a comparative study with the ICD-O
    Xu, Yicong
    Zhou, Jingya
    Wang, Yi
    BMC MEDICAL INFORMATICS AND DECISION MAKING, 2022, 22 (01)
  • [8] Elimination disorders - ICD-11 classification and definitions
    von Gontard, Alexander
    ZEITSCHRIFT FUR KINDER-UND JUGENDPSYCHIATRIE UND PSYCHOTHERAPIE, 2021, 49 (06): : 421 - 428
  • [9] Application of the ICD-11 classification of personality disorders
    Bach, Bo
    First, Michael B.
    BMC PSYCHIATRY, 2018, 18
  • [10] Changes from ICD-10 to ICD-11 and future directions in psychiatric classification
    Gaebel, Wolfgang
    Stricker, Johannes
    Kerst, Ariane
    DIALOGUES IN CLINICAL NEUROSCIENCE, 2020, 22 (01) : 7 - 15