Global integrability for solutions to quasilinear elliptic systems with degenerate coercivity

被引:0
作者
Li, Ya [1 ]
Liu, Gaoyang [1 ]
Gao, Hongya [1 ]
机构
[1] Hebei Univ, Coll Math & Informat Sci, Baoding 071002, Peoples R China
基金
中国国家自然科学基金;
关键词
degenerate coercivity; global integrability; quasilinear elliptic system; BOUNDED SOLUTIONS; WEAK SOLUTIONS; REGULARITY; EQUATIONS; EXISTENCE;
D O I
10.1002/mana.202200550
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with global integrability for solutions to quasilinear elliptic systems involving N equations of the form {- Sigma(n)(i=1) D-i.. (Sigma(N)(beta=1)Sigma(n)(j=1) alpha(i,j) (alpha,beta) (x, u(x))D(j)u(beta)(x)) = f(alpha)(x). in Omega. u(x) = 0, on partial derivative Omega, where Omega is an open bounded subset of R-n, n > 2, u = (u(1), u(2), ..., u(N)) : Omega subset of R-n -> R-N, N >= 2. Under degenerate coercivity condition of the diagonal coefficients and proportional condition of the off-diagonal coefficients, we obtain some global integrability results.
引用
收藏
页码:1818 / 1830
页数:13
相关论文
共 37 条
[1]   Riesz potential estimates for a general class of quasilinear equations [J].
Baroni, Paolo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 53 (3-4) :803-846
[2]  
Betta M. F., 1998, RIC MAT, V47, P277
[3]  
Boccardo L, 1997, B UNIONE MAT ITAL, V11A, P439
[4]   NON-LINEAR ELLIPTIC AND PARABOLIC EQUATIONS INVOLVING MEASURE DATA [J].
BOCCARDO, L ;
GALLOUET, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1989, 87 (01) :149-169
[5]  
Boccardo L., 1996, DIFFERENTIAL INTEGRA, V9, P209, DOI DOI 10.57262/DIE/1367969997
[6]  
Boccardo L., 2010, ESISTENZA REGOLARIT, V51
[7]  
Boccardo L., 2014, DEGRUYTER STUD MATH, V55, P50
[8]   Regularity results for the gradient of solutions linear elliptic equations with L1,λ data [J].
Cirmi, G. R. ;
Leonardi, S. .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2006, 185 (04) :537-553
[9]  
Cirmi G. R., 1993, Ricerche Mat, V42, P315
[10]  
DEGIORGI E, 1968, B UNIONE MAT ITAL, V1, P135