Note on the Minimum Bond Incident Degree Indices of k-Cyclic Graphs

被引:3
|
作者
Liu, Hechao [1 ,2 ]
Du, Zenan [1 ]
Huang, Yufei [3 ]
Chen, Hanlin [4 ]
Elumalai, Suresh [5 ]
机构
[1] South China Normal Univ, Sch Math Sci, Guangzhou 510631, Peoples R China
[2] Hubei Normal Univ, Sch Math & Stat, Huangshi 435002, Hubei, Peoples R China
[3] Guangzhou Civil Aviat Coll, Dept Math Teaching, Guangzhou 510403, Peoples R China
[4] Changsha Univ, Sch Math, Changsha 410022, Hunan, Peoples R China
[5] SRM Inst Sci & Technol, Coll Engn & Technol, Dept Math, Chengalpet 603203, India
基金
中国国家自然科学基金;
关键词
TOPOLOGICAL INDEXES; EXTREMAL GRAPHS; CYCLOMATIC NUMBER; ZAGREB INDEX; CHI(ALPHA);
D O I
10.46793/match.91-1.255L
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Let G be a connected graph with n vertices. The bond incident degree (BID) indices TI(G) of G with edge-weight function I(x, y) is defined as TI(G) = Sigma(uv is an element of E(G)) I(d(u), d(v)), where I(x, y) > 0 is a symmetric real function with x >= 1 and y >= 1, d(u) is the degree of vertex u in G. In this note, we deduce a number of previously established results, and state a few new. For the BID index TI with the property P *, we can obtain the minimum k-cyclic (chemical) graphs for k >= 3, n >= 5(k - 1). These BID indices include the Sombor index, the general Sombor index, the p-Sombor index, the general sum-connectivity index and so on. Thus this note extends the results of Liu et al. [H. Liu, L. You, Y. Huang, Sombor index of c-cyclic chemical graphs, MATCH Commun. Math. Comput. Chem. 90 (2023) 495-504] and Ali et al. [A. Ali, D. Dimitrov, Z. Du, F. Ishfaq, On the extremal graphs for general sum-connectivity index (chi(alpha)) with given cyclomatic number when alpha > 1, Discrete Appl. Math. 257 (2019) 19-30].
引用
收藏
页码:255 / 266
页数:12
相关论文
共 15 条
  • [1] On (exponential) bond incident degree indices of graphs
    Wei, Peichao
    Liu, Muhuo
    Gutman, Ivan
    DISCRETE APPLIED MATHEMATICS, 2023, 336 : 141 - 147
  • [2] On the extremal graphs with respect to bond incident degree indices
    Ali, Akbar
    Dimitrov, Darko
    DISCRETE APPLIED MATHEMATICS, 2018, 238 : 32 - 40
  • [3] Bond incident degree indices of stepwise irregular graphs
    Adiyanyam, Damchaa
    Azjargal, Enkhbayar
    Buyantogtokh, Lkhagva
    AIMS MATHEMATICS, 2022, 7 (05): : 8685 - 8700
  • [4] On the maximum sigma index of k-cyclic graphs
    Ali, Akbar
    Albalahi, Abeer M.
    Alanazi, Abdulaziz M.
    Bhatti, Akhlaq Ahmad
    Hamza, Amjad E.
    DISCRETE APPLIED MATHEMATICS, 2023, 325 : 58 - 62
  • [5] EXTREMAL TRIANGULAR CHAIN GRAPHS FOR BOND INCIDENT DEGREE (BID) INDICES
    Ali, Akbar
    Bhatti, Akhlaq Ahmad
    ARS COMBINATORIA, 2018, 141 : 213 - 227
  • [6] Bond Incident Degree Indices of Connected(n, m)-Graphs With Fixed Maximum Degree
    Albalahi, Abeer M.
    Dimitrov, Darko
    Reti, Tamas
    Ali, Akbar
    Hussain, Shah
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2024, 92 (03) : 607 - 630
  • [7] On Bond Incident Degree Indices of Connected Graphs with Fixed Order and Number of Pendent Vertices
    Zhou, Wenliang
    Pang, Shumei
    Liu, Muhuo
    Ali, Akbar
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2022, 88 (03) : 625 - 642
  • [8] Bond incident degree (BID) indices for some nanostructures
    Ali, Akbar
    Raza, Zahid
    Bhatti, Akhlaq Ahmad
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2016, 10 (1-2): : 108 - 112
  • [9] On Bond Incident Degree Indices of Random Spiro Chains
    Sigarreta, Sayle
    Sigarreta, Sayli
    Cruz-Suarez, Hugo
    POLYCYCLIC AROMATIC COMPOUNDS, 2023, 43 (07) : 6306 - 6318
  • [10] Extremal pentagonal chains with respect to bond incident degree indices
    Ali, Akbar
    Raza, Zahid
    Bhatti, Akhlaq Ahmad
    CANADIAN JOURNAL OF CHEMISTRY, 2016, 94 (10) : 870 - 876