Properties of Concrete Reinforced with a Basalt Fiber Microwave-Absorbing Shielding Layer

被引:1
|
作者
Jiang, Aqing [1 ]
Song, Zihao [1 ]
Wang, Xuancang [1 ]
Zhao, Jing [1 ]
Ren, Junru [2 ]
机构
[1] Changan Univ, Sch Highway, Xian 710064, Peoples R China
[2] Army Logist Acad PLA, Dept Mil Installat, Chongqing 401331, Peoples R China
基金
英国科研创新办公室;
关键词
microwave-absorbing concrete cement; shielding layer; basalt fiber; mechanical strength; durability; LOW-TEMPERATURE; BEHAVIOR; PERFORMANCE;
D O I
10.3390/su152215919
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The purpose of this study was to propose a highly efficient, durable, and environmentally friendly method for the rapid removal of ice and snow. A microwave-absorbing functionality layer was placed between a conductive metal mesh and magnetite sand shielding layer, and ordinary cement concrete (OC). Microwave heating, mechanical strength determination, and indoor and outdoor de-icing tests were performed on the cement concrete specimens with the shielding layer. Basalt fibers were added to the absorbing functionality layer, and the formed specimens were tested for strength and durability. The microstructure was observed using SEM experiments. The results show that the temperature rise of microwave-absorbing cement concrete with a magnetite sand shielding layer (MCMS) and microwave-absorbing cement concrete with a conductive metal mesh shielding layer (MCMM) increased by approximately 17.2% and 27.1%, respectively, compared to that of microwave-absorbing concrete (MAC). After freeze-thaw cycles, the compressive strength and flexural strength of microwave-absorbing concrete with basalt fiber (MAB) increased by 4.35% and 7.90% compared to those of MAC, respectively. The compressive strength and flexural strength of microwave-absorbing concrete with a magnetite sand shielding layer and basalt fiber (MAMB) increased by 8.07% and 6.57%, respectively, compared to those of MCMS. Compared to specimens without basalt fiber, the wear rate per unit area of MAMB decreased by 8.8%, and the wear rate of MAB decreased by 9.4%. The water absorption rate of MAMB specimens decreased by 13.1% and 12.0% under the conditions of 20 and 40 microwave freeze-thaw cycles, respectively, compared to that of MCMS. The water absorption rate of MAB specimens decreased by 9.9% and 8.3% under the conditions of 20 and 40 microwave freeze-thaw cycles, respectively, compared to that of MAC. SEM analysis showed that the addition of basalt fibers improved the compactness and stability of the cement concrete structure as a whole. This study provides valuable references for the promotion and application of microwave de-icing technology.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Mechanical properties and microscopic mechanism of basalt fiber-reinforced red mud concrete
    Liu, Ao
    Kong, Dewen
    Jiang, Jiatong
    Wang, Lingling
    Liu, Can
    He, Runyun
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 416
  • [32] Early age dynamic mechanical properties of basalt fiber reinforced early strength concrete
    Wang, Zhihang
    Bai, Erlei
    Liu, Chaojia
    Qin, Lijun
    Lv, Yan
    STRUCTURAL CONCRETE, 2023, 24 (06) : 7648 - 7659
  • [33] Viscoelastic creep properties and mesostructure modeling of basalt fiber-reinforced asphalt concrete
    Zhang, Xiaoyuan
    Liu, Jiaxing
    CONSTRUCTION AND BUILDING MATERIALS, 2020, 259
  • [34] Analysis on Mechanical properties and Durability of the Chopped Basalt Fiber Reinforced Concrete
    Kan, Zebao
    Li, Yanru
    ARCHITECTURE AND URBAN DEVELOPMENT, 2012, 598 : 627 - 630
  • [35] Study on Bond Properties of BFRP Bars to Basalt Fiber Reinforced Concrete
    Bi, Qiaowei
    Wang, Qingxiang
    Wang, Hui
    ADVANCES IN STRUCTURES, PTS 1-5, 2011, 163-167 : 1251 - +
  • [36] Mechanical Properties of Basalt Fiber Reinforced Concrete at Low cycle Impact
    Dong, Jinqiu
    ADVANCED BUILDING MATERIALS AND SUSTAINABLE ARCHITECTURE, PTS 1-4, 2012, 174-177 : 1524 - 1527
  • [37] Study on Mechanical Properties of Basalt Fiber-Reinforced Concrete with High Content of Stone Powder at High Temperatures
    Xu, Lina
    Song, Daohan
    Liu, Ning
    Tian, Wei
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [38] The Effect of the Basalt Fiber on Mechanical Properties and Corrosion Durability in Concrete
    Ogut, Ramazan
    Demir, Abdullah
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2023, 48 (04) : 5097 - 5114
  • [39] Impact of basalt fiber on the fracture properties of recycled aggregate concrete
    Shi, Wenjuan
    Guo, YaoDong
    Liu, Yuanzhen
    Wang, Wenjing
    Duan, Pengfei
    Bian, HaoBo
    Chen, JiaFei
    CONSTRUCTION AND BUILDING MATERIALS, 2024, 418
  • [40] Experimental investigation of the mechanical properties of basalt fiber-reinforced concrete
    Jalasutram, Sruthi
    Sahoo, Dipti Ranjan
    Matsagar, Vasant
    STRUCTURAL CONCRETE, 2017, 18 (02) : 292 - 302