CHEMOTAXIS(-FLUID) SYSTEMS WITH LOGARITHMIC SENSITIVITY AND SLOW CONSUMPTION: GLOBAL GENERALIZED SOLUTIONS AND EVENTUAL SMOOTHNESS

被引:7
作者
Fuest, Mario [1 ]
机构
[1] Leibniz Univ Hannover, Inst Angew Math, Welfengarten 1, D-30167 Hannover, Germany
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B | 2023年 / 28卷 / 10期
关键词
Chemotaxis; fluid; logarithmic sensitivity; generalized solutions; even-tual smoothness; KELLER-SEGEL SYSTEM; EXISTENCE; MODELS; STABILIZATION; BACTERIA;
D O I
10.3934/dcdsb.2022232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system ⎧ ⎨ ⎪ ⎪⎩ nt +u center dot Vn= Delta n -chi V center dot (ncVc), ct + u center dot Vc = Delta c - nf (c), ut + (u center dot V)u = Delta u + VP + nV0, V center dot u = 0, in smooth bounded domains omega C RN, N E N, for given f >= 0, 0 and comple-mented with initial and homogeneous Neumann-Neumann-Dirichlet boundary conditions, which models aerobic bacteria in a fluid drop. We assume f (0) = 0 and f'(0) = 0, that is, that f decays slower than linearly near 0, and construct global generalized solutions provided that either N = 2 or N > 2 and no fluid is present. If additionally N = 2, we next prove that this solution eventually becomes smooth and stabilizes in the large-time limit. We emphasize that these results require smallness neither of chi nor of the initial data.
引用
收藏
页码:5177 / 5202
页数:26
相关论文
共 45 条
[1]   Chemotaxis and cross-diffusion models in complex environments: Models and analytic problems toward a multiscale vision [J].
Bellomo, N. ;
Outada, N. ;
Soler, J. ;
Tao, Y. ;
Winkler, M. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2022, 32 (04) :713-792
[2]   From a multiscale derivation of nonlinear cross-diffusion models to Keller-Segel models in a Navier-Stokes fluid [J].
Bellomo, N. ;
Bellouquid, A. ;
Chouhad, N. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (11) :2041-2069
[4]   Global classical small-data solutions for a three-dimensional chemotaxis Navier-Stokes system involving matrix-valued sensitivities [J].
Cao, Xinru ;
Lankeit, Johannes .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2016, 55 (04)
[5]   Global Existence and Temporal Decay in Keller-Segel Models Coupled to Fluid Equations [J].
Chae, Myeongju ;
Kang, Kyungkeun ;
Lee, Jihoon .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2014, 39 (07) :1205-1235
[6]  
Csiszar I, 1967, Studia Scientiarum Mathematicarum Hungarica, V2, P229
[7]   Lebesgue Integration [J].
De la Vallee, C. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1915, 16 (1-4) :435-501
[8]   Self-concentration and large-scale coherence in bacterial dynamics [J].
Dombrowski, C ;
Cisneros, L ;
Chatkaew, S ;
Goldstein, RE ;
Kessler, JO .
PHYSICAL REVIEW LETTERS, 2004, 93 (09) :098103-1
[9]   Global Solutions to the Coupled Chemotaxis-Fluid Equations [J].
Duan, Renjun ;
Lorz, Alexander ;
Markowich, Peter .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2010, 35 (09) :1635-1673
[10]  
Fuest M, 2022, Arxiv, DOI arXiv:2202.00317