The study of channeled vacuum GaAs photocathodes for enhanced electron emission properties

被引:2
作者
Sha, Weiwei [1 ]
Zhang, Junju [1 ]
Li, Li [1 ]
Cai, Yi [1 ]
Wang, Yong [1 ]
Hao, Guanghui [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing 210094, Peoples R China
[2] Beijing Vacuum Elect Res Inst, Beijing 100015, Peoples R China
来源
MICRO AND NANOSTRUCTURES | 2023年 / 184卷
基金
中国国家自然科学基金;
关键词
Vacuum channel; Photocathode; Current density; HIGH-BRIGHTNESS;
D O I
10.1016/j.micrna.2023.207681
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
In this paper, we design and analyze the channeled vacuum photocathodes with novel structures towards low operating temperature, high current density, and miniaturized cathode electron sources. We simulate the characteristics of the electron emission of the channeled vacuum GaAs photocathodes in detail with the commercial CST software. Simulation results indicate that the emission current of the photocathode can increase with the optimal gate and anode voltage choices, and the emission efficiency can reach up to 63.4 %. Using this optimized structure as the benchmark, the quantum efficiency and emission efficiency are also investigated. Furthermore, we have altered the channel morphology, i.e., with the curved vacuum channel structures, to enhance the current density. We have found that the emission current density can increase significantly and reach up to 2.68 times of the regular rectangular channel. The simulation results can lay the foundation for the development of new type of micro-structured GaAs photocathodes.
引用
收藏
页数:10
相关论文
共 32 条
  • [1] Complementary Vacuum Field Emission Transistor
    Bhattacharya, Ranajoy
    Han, Jin-Woo
    Browning, Jim
    Meyyappan, M.
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2021, 68 (10) : 5244 - 5249
  • [2] Numerical analysis of temporal response of a large exponential-doping transmission-mode GaAs photocathode
    Cai, Zhipeng
    Yang, Wenzheng
    Tang, Weidong
    Hou, Xun
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2013, 16 (02) : 238 - 244
  • [3] Optical fiber-based photocathode
    Casandruc, Albert
    Buecker, Robert
    Kassier, Guenther
    Miller, R. J. Dwayne
    [J]. APPLIED PHYSICS LETTERS, 2016, 109 (09)
  • [4] Generation and acceleration of electron bunches from a plasma photocathode
    Deng, A.
    Karger, O. S.
    Heinemann, T.
    Knetsch, A.
    Scherkl, P.
    Manahan, G. G.
    Beaton, A.
    Ullmann, D.
    Wittig, G.
    Habib, A. F.
    Xi, Y.
    Litos, M. D.
    O'Shea, B. D.
    Gessner, S.
    Clarke, C., I
    Green, S. Z.
    LindstrOm, C. A.
    Adli, E.
    Zgadzaj, R.
    Downer, M. C.
    Andonian, G.
    Murokh, A.
    Bruhwiler, D. L.
    Cary, J. R.
    Hogan, M. J.
    Yakimenko, V
    Rosenzweig, J. B.
    Hidding, B.
    [J]. NATURE PHYSICS, 2019, 15 (11) : 1156 - +
  • [5] The 2017 terahertz science and technology roadmap
    Dhillon, S. S.
    Vitiello, M. S.
    Linfield, E. H.
    Davies, A. G.
    Hoffmann, Matthias C.
    Booske, John
    Paoloni, Claudio
    Gensch, M.
    Weightman, P.
    Williams, G. P.
    Castro-Camus, E.
    Cumming, D. R. S.
    Simoens, F.
    Escorcia-Carranza, I.
    Grant, J.
    Lucyszyn, Stepan
    Kuwata-Gonokami, Makoto
    Konishi, Kuniaki
    Koch, Martin
    Schmuttenmaer, Charles A.
    Cocker, Tyler L.
    Huber, Rupert
    Markelz, A. G.
    Taylor, Z. D.
    Wallace, Vincent P.
    Zeitler, J. Axel
    Sibik, Juraj
    Korter, Timothy M.
    Ellison, B.
    Rea, S.
    Goldsmith, P.
    Cooper, Ken B.
    Appleby, Roger
    Pardo, D.
    Huggard, P. G.
    Krozer, V.
    Shams, Haymen
    Fice, Martyn
    Renaud, Cyril
    Seeds, Alwyn
    Stoehr, Andreas
    Naftaly, Mira
    Ridler, Nick
    Clarke, Roland
    Cunningham, John E.
    Johnston, Michael B.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2017, 50 (04)
  • [6] Extraction of emission parameters for large-area field emitters, using a technically complete Fowler-Nordheim-type equation
    Forbes, Richard G.
    [J]. NANOTECHNOLOGY, 2012, 23 (09)
  • [7] NEA surface activation of GaAs photocathode with different gases
    Guo, L.
    Kuriki, M.
    Iijima, H.
    Uchida, K.
    [J]. SURFACE SCIENCE, 2017, 664 : 65 - 69
  • [8] Nanoscale vacuum channel transistors fabricated on silicon carbide wafers
    Han, Jin-Woo
    Seol, Myeong-Lok
    Moon, Dong-Il
    Hunter, Gary
    Meyyappan, M.
    [J]. NATURE ELECTRONICS, 2019, 2 (09) : 405 - 411
  • [9] The electron emission characteristics of GaAs photocathode with vacuum-channel structure
    Hao Guang-Hui
    Han Pan-Yang
    Li Xing-Hui
    Li Ze-Peng
    Gao Yu-Juan
    [J]. ACTA PHYSICA SINICA, 2020, 69 (10)
  • [10] A Tutorial on Electron Sources
    Jensen, Kevin L.
    [J]. IEEE TRANSACTIONS ON PLASMA SCIENCE, 2018, 46 (06) : 1881 - 1899