Metabarcoding by Combining Environmental DNA with Environmental RNA to Monitor Fish Species in the Han River, Korea

被引:2
|
作者
An, Hyung-Eun [1 ]
Mun, Min-Ho [1 ]
Kim, Chang-Bae [1 ]
机构
[1] Sangmyung Univ, Dept Biotechnol, Seoul 03016, South Korea
关键词
fish; metabarcoding; eDNA; eRNA; monitoring; Han River; Korea;
D O I
10.3390/fishes8110550
中图分类号
S9 [水产、渔业];
学科分类号
0908 ;
摘要
Fishes are ecologically important organisms that have long lifespans, high mobilities, and diverse trophic levels. Due to their importance, fishes are used as bioindicators for monitoring aquatic environments. One method for monitoring fishes is based on environmental DNA (eDNA), which are the deoxynucleic acids released by organisms into the environment. However, there has been a problem with false positives because eDNA is relatively stable in the environment and could even likely represent dead or non-inhabiting organisms. To address this weakness, environmental RNA (eRNA), which degrades more rapidly than eDNA in the environment, can be utilized to complement eDNA. But, to date, few studies have used eRNA for freshwater fish monitoring. In this study, to determine the relative usefulness of eDNA and eRNA metabarcoding in freshwater fishes, we performed eDNA and eRNA metabarcoding on 12S rRNA targeting fish using water samples that were collected from three locations in the Han River. We then calculated the sensitivity and positive predictivity of this approach by comparing our data to the previous specimen capture survey (PSCS) data from the last six years. The results showed that 42 species were detected by eDNA and 19 by eRNA at the three locations. At all locations, compared to the PSCS data, the average sensitivity was higher for eDNA (46.1%) than for eRNA (34.6%), and the average positive predictivity was higher for eRNA (31.7%) than for eDNA (20.7%). This confirmed that eDNA metabarcoding has the advantage of broadly determining species presence or absence (including those that are no longer present or dead), but it also generates false positives; meanwhile, eRNA metabarcoding reports living fish species, but detects fewer species than eDNA. Combining eDNA and eRNA therefore emphasizes their advantages and compensates for their disadvantages, and conducting this may therefore be useful for identifying false positives and monitoring the fish species that are actually present in the environment. This metabarcoding technique can be used in the future to provide insights into the aquatic environment and the monitoring of fisheries.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Estimation of biodiversity metrics by environmental DNA metabarcoding compared with visual and capture surveys of river fish communities
    Doi, Hideyuki
    Inui, Ryutei
    Matsuoka, Shunsuke
    Akamatsu, Yoshihisa
    Goto, Masuji
    Kono, Takanori
    FRESHWATER BIOLOGY, 2021, 66 (07) : 1257 - 1266
  • [22] Detection of fish species composition using environmental DNA in aquarium trials
    Chen, Shijing
    Shu, Lu
    Lin, Jiayan
    Ludwig, Arne
    Peng, Zuogang
    JOURNAL OF APPLIED ICHTHYOLOGY, 2022, 38 (05) : 540 - 544
  • [23] Assessment of Fish Species in Wanlv Lake, the Largest Drinking Water Source in South China, by Environmental DNA Metabarcoding Technology
    Wu, Jingjing
    Fu, Jinghua
    Zhou, Dingkang
    Huang, Jiasen
    Xu, Minjun
    FISHES, 2024, 9 (03)
  • [24] Methodology for fish biodiversity monitoring with environmental DNA metabarcoding: The primers, databases and bioinformatic pipelines
    Xiong, Fan
    Shu, Lu
    Zeng, Honghui
    Gan, Xiaoni
    He, Shunping
    Peng, Zuogang
    WATER BIOLOGY AND SECURITY, 2022, 1 (01):
  • [25] Environmental DNA metabarcoding uncovers environmental correlates of fish communities in spatially heterogeneous freshwater habitats
    Blabolil, Petr
    Harper, Lynsey R.
    Ricanova, Stepanka
    Sellers, Graham
    Di Muri, Cristina
    Juza, Tomas
    Vasek, Mojmir
    Sajdlova, Zuzana
    Rychtecky, Pavel
    Znachor, Petr
    Hejzlar, Josef
    Peterka, Jiri
    Hanfling, Bernd
    ECOLOGICAL INDICATORS, 2021, 126
  • [26] Environmental DNA metabarcoding as an effective and rapid tool for fish monitoring in canals
    McDevitt, Allan D.
    Sales, Naiara Guimaraes
    Browett, Samuel S.
    Sparnenn, Abbie O.
    Mariani, Stefano
    Wangensteen, Owen S.
    Coscia, Ilaria
    Benvenuto, Chiara
    JOURNAL OF FISH BIOLOGY, 2019, 95 (02) : 679 - 682
  • [27] Environmental DNA metabarcoding as an efficient tool to monitor freshwater systems in northwestern Italy
    Ballini, Lorenzo
    Staffoni, Giorgia
    Nespoli, Davide
    Ottonello, Dario
    Candiotto, Alessandro
    Forte, Simone
    Vezza, Paolo
    Iannucci, Alessio
    Fratini, Sara
    HYDROBIOLOGIA, 2025, 852 (04) : 791 - 803
  • [28] Fish Diversity Monitored by Environmental DNA in the Yangtze River Mainstream
    Jia, Hui
    Zhang, Hui
    Xian, Weiwei
    FISHES, 2022, 7 (01)
  • [29] Assessment of fish diversity in the coastal waters off Nodaedo Island, Tongyeong, Korea, using an underwater visual census and environmental DNA metabarcoding
    Lee, Yong-Deuk
    Lee, Gang-Min
    Gwak, Woo-Seok
    MARINE BIOLOGY, 2024, 171 (01)
  • [30] Environmental DNA metabarcoding describes biodiversity across marine gradients
    Adams, Clare I. M.
    Jeunen, Gert-Jan
    Cross, Hugh
    Taylor, Helen R.
    Bagnaro, Antoine
    Currie, Kim
    Hepburn, Chris
    Gemmell, Neil J.
    Urban, Lara
    Baltar, Federico
    Stat, Michael
    Bunce, Michael
    Knapp, Michael
    ICES JOURNAL OF MARINE SCIENCE, 2023, 80 (04) : 953 - 971