From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems

被引:31
|
作者
Wang, Tianyu [1 ]
Noori, Mohammad [2 ,3 ]
Altabey, Wael A. [4 ,5 ]
Wu, Zhishen [4 ]
Ghiasi, Ramin [4 ,6 ]
Kuok, Sin-Chi [7 ]
Silik, Ahmed [4 ,8 ]
Farhan, Nabeel S. D. [4 ]
Sarhosis, Vasilis [3 ]
Farsangi, Ehsan Noroozinejad [9 ]
机构
[1] Shanghai Inst Technol, Sch Urban Construct & Safety Engn, Shanghai 201418, Peoples R China
[2] Calif Polytech State Univ San Luis Obispo, Dept Mech Engn, San Luis Obispo, CA 93407 USA
[3] Univ Leeds, Sch Civil Engn, Leeds LS2 9JT, England
[4] Southeast Univ, Int Inst Urban Syst Engn IIUSE, Nanjing 211189, Peoples R China
[5] Alexandria Univ, Fac Engn, Dept Mech Engn, Alexandria 21544, Egypt
[6] Univ Coll Dublin, Sch Civil Engn, Struct Dynam & Assessment Lab, Dublin D04 V1W8, Ireland
[7] Univ Macau, Dept Civil & Environm Engn, State Key Lab Internet Things Smart City, Guangdong Hong Kong Macau Joint Lab Smart Cities, Macau, Peoples R China
[8] Nyala Univ, Dept Civil Engn, Nyala, Sudan
[9] Western Sydney Univ, Urban Transformat Res Ctr UTRC, Penrith, Australia
基金
中国国家自然科学基金;
关键词
Hysteresis modeling; Structural and mechanical system; Model-driven method; Data-driven method; Model-data hybrid driven method; BOUC-WEN MODEL; PRANDTL-ISHLINSKII MODEL; PARAMETER-IDENTIFICATION; SEISMIC BEHAVIOR; RANDOM VIBRATION; NEURAL-NETWORKS; ONLINE IDENTIFICATION; KALMAN FILTER; MAGNETIC HYSTERESIS; RESTORING FORCES;
D O I
10.1016/j.ymssp.2023.110785
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hysteresis is a natural phenomenon that widely exists in structural and mechanical systems. The characteristics of structural hysteretic behaviors are complicated. Therefore, numerous methods have been developed to describe hysteresis. In this paper, a review of the available hysteretic modeling methods is carried out. Such methods are divided into: a) model-driven and b) datadriven methods. The model-driven method uses parameter identification to determine parameters. Three types of parametric models are introduced including polynomial models, differential based models, and operator based models. Four algorithms as least mean square error algorithm, Kalman filter algorithm, metaheuristic algorithms, and Bayesian estimation are presented to realize parameter identification. The data-driven method utilizes universal mathematical models to describe hysteretic behavior. Regression model, artificial neural network, least square support vector machine, and deep learning are introduced in turn as the classical data-driven methods. Model-data driven hybrid methods are also discussed to make up for the shortcomings of the two methods. Based on a multi-dimensional evaluation, the existing problems and open challenges of different hysteresis modeling methods are discussed. Some possible research directions about hysteresis description are given in the final section.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Data-Driven Hybrid Neural Network Under Model-Driven Supervised Learning for Structural Dynamic Impact Localization
    Luan, Yingxin
    Li, Teng
    Song, Ran
    Zhang, Wei
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT II, 2022, 13605 : 350 - 361
  • [22] A Soft Sensor Modeling of Cement Rotary Kiln Temperature Field Based on Model-Driven and Data-Driven Methods
    Xu, Jinhao
    Fu, Dongmei
    Shao, Lizhen
    Zhang, Xiaojun
    Liu, Gang
    IEEE SENSORS JOURNAL, 2021, 21 (24) : 27632 - 27639
  • [23] Model-Driven Data Collection for Biological Systems
    Lin, Xiao
    Terejanu, Gabriel
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 2524 - 2529
  • [24] Practical Dynamic Security Region Model: A Hybrid Physical Model-Driven and Data-Driven Approach
    Ren, Junzhi
    Zeng, Yuan
    Qin, Chao
    IEEE TRANSACTIONS ON POWER SYSTEMS, 2025, 40 (01) : 728 - 739
  • [25] Industrial robot energy consumption model identification: A coupling model-driven and data-driven paradigm
    Jiang, Pei
    Zheng, Jiajun
    Wang, Zuoxue
    Qin, Yan
    Li, Xiaobin
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 262
  • [26] MD3Net: Integrating Model-Driven and Data-Driven Approaches for Pansharpening
    Yan, Yinsong
    Liu, Junmin
    Xu, Shuang
    Wang, Yicheng
    Cao, Xiangyong
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [27] A Comparison of Data-Driven and Model-Driven Approaches to Brightness Temperature Diurnal Cycle Interpolation
    van den Bergh, F.
    van Wyk, M. A.
    van Wyk, B. J.
    Udahemuka, G.
    SAIEE AFRICA RESEARCH JOURNAL, 2007, 98 (03): : 81 - 86
  • [28] DATA-DRIVEN AND MODEL-DRIVEN SPECTRAL SUPERRESOLUTION ALGORITHMS: COMBINATION, ANALYSIS AND APPLICATION FOR CLASSIFICATION
    He, Jiang
    Li, Jie
    Yuan, Qiangqiang
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2687 - 2690
  • [29] Data-Driven Modeling of the Bicalutamide Dissolution from Powder Systems
    Mendyk, Aleksander
    Paclawski, Adam
    Szafraniec-Szczesny, Joanna
    Antosik, Agata
    Jamroz, Witold
    Paluch, Marian
    Jachowicz, Renata
    AAPS PHARMSCITECH, 2020, 21 (03)
  • [30] Hyperspectral and multispectral image fusion: When model-driven meet data-driven strategies
    Yan, Hao-Fang
    Zhao, Yong-Qiang
    Chan, Jonathan Cheung-Wai
    Kong, Seong G.
    EI-Bendary, Nashwa
    Reda, Mohamed
    INFORMATION FUSION, 2025, 116