From model-driven to data-driven: A review of hysteresis modeling in structural and mechanical systems

被引:32
|
作者
Wang, Tianyu [1 ]
Noori, Mohammad [2 ,3 ]
Altabey, Wael A. [4 ,5 ]
Wu, Zhishen [4 ]
Ghiasi, Ramin [4 ,6 ]
Kuok, Sin-Chi [7 ]
Silik, Ahmed [4 ,8 ]
Farhan, Nabeel S. D. [4 ]
Sarhosis, Vasilis [3 ]
Farsangi, Ehsan Noroozinejad [9 ]
机构
[1] Shanghai Inst Technol, Sch Urban Construct & Safety Engn, Shanghai 201418, Peoples R China
[2] Calif Polytech State Univ San Luis Obispo, Dept Mech Engn, San Luis Obispo, CA 93407 USA
[3] Univ Leeds, Sch Civil Engn, Leeds LS2 9JT, England
[4] Southeast Univ, Int Inst Urban Syst Engn IIUSE, Nanjing 211189, Peoples R China
[5] Alexandria Univ, Fac Engn, Dept Mech Engn, Alexandria 21544, Egypt
[6] Univ Coll Dublin, Sch Civil Engn, Struct Dynam & Assessment Lab, Dublin D04 V1W8, Ireland
[7] Univ Macau, Dept Civil & Environm Engn, State Key Lab Internet Things Smart City, Guangdong Hong Kong Macau Joint Lab Smart Cities, Macau, Peoples R China
[8] Nyala Univ, Dept Civil Engn, Nyala, Sudan
[9] Western Sydney Univ, Urban Transformat Res Ctr UTRC, Penrith, Australia
基金
中国国家自然科学基金;
关键词
Hysteresis modeling; Structural and mechanical system; Model-driven method; Data-driven method; Model-data hybrid driven method; BOUC-WEN MODEL; PRANDTL-ISHLINSKII MODEL; PARAMETER-IDENTIFICATION; SEISMIC BEHAVIOR; RANDOM VIBRATION; NEURAL-NETWORKS; ONLINE IDENTIFICATION; KALMAN FILTER; MAGNETIC HYSTERESIS; RESTORING FORCES;
D O I
10.1016/j.ymssp.2023.110785
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Hysteresis is a natural phenomenon that widely exists in structural and mechanical systems. The characteristics of structural hysteretic behaviors are complicated. Therefore, numerous methods have been developed to describe hysteresis. In this paper, a review of the available hysteretic modeling methods is carried out. Such methods are divided into: a) model-driven and b) datadriven methods. The model-driven method uses parameter identification to determine parameters. Three types of parametric models are introduced including polynomial models, differential based models, and operator based models. Four algorithms as least mean square error algorithm, Kalman filter algorithm, metaheuristic algorithms, and Bayesian estimation are presented to realize parameter identification. The data-driven method utilizes universal mathematical models to describe hysteretic behavior. Regression model, artificial neural network, least square support vector machine, and deep learning are introduced in turn as the classical data-driven methods. Model-data driven hybrid methods are also discussed to make up for the shortcomings of the two methods. Based on a multi-dimensional evaluation, the existing problems and open challenges of different hysteresis modeling methods are discussed. Some possible research directions about hysteresis description are given in the final section.
引用
收藏
页数:39
相关论文
共 50 条
  • [21] Data-driven modeling of beam loss in the LHC
    Krymova, Ekaterina
    Obozinski, Guillaume
    Schenk, Michael
    Coyle, Loic
    Pieloni, Tatiana
    FRONTIERS IN PHYSICS, 2023, 10
  • [22] The Evolution of Data-Driven Modeling in Organic Chemistry
    Williams, Wendy L.
    Zeng, Lingyu
    Gensch, Tobias
    Sigman, Matthew S.
    Doyle, Abigail G.
    Anslyn, Eric, V
    ACS CENTRAL SCIENCE, 2021, 7 (10) : 1622 - 1637
  • [23] Data-driven Modeling for Chinese Ancient Architectures
    Ren, Pu
    Zhou, Mingquan
    Wu, Zhongke
    Zhang, Juan
    Huang, Youliang
    Shui, Wuyang
    PROCEEDINGS VRCAI 2016: 15TH ACM SIGGRAPH CONFERENCE ON VIRTUAL-REALITY CONTINUUM AND ITS APPLICATIONS IN INDUSTRY, 2016, : 59 - 62
  • [24] Efficient data-driven predictive control of nonlinear systems: A review and perspectives
    Li, Xiaojie
    Yan, Mingxue
    Zhang, Xuewen
    Han, Minghao
    Law, Adrian Wing-Keung
    Yin, Xunyuan
    DIGITAL CHEMICAL ENGINEERING, 2025, 14
  • [25] Discovering differential governing equations of hysteresis dynamic systems by data-driven sparse regression method
    Qian, Jiawei
    Sun, Xiuting
    Xu, Jian
    Cheng, Li
    NONLINEAR DYNAMICS, 2024, : 12137 - 12157
  • [26] Development and Validation of New Bouc-Wen Data-Driven Hysteresis Model for Masonry Infilled RC Frames
    Sirotti, Stefano
    Pelliciari, Matteo
    Di Trapani, Fabio
    Briseghella, Bruno
    Marano, Giuseppe Carlo
    Nuti, Camillo
    Tarantino, Angelo Marcello
    JOURNAL OF ENGINEERING MECHANICS, 2021, 147 (11)
  • [27] 2022 Review of Data-Driven Plasma Science
    Anirudh, Rushil
    Archibald, Rick
    Asif, M. Salman
    Becker, Markus M.
    Benkadda, Sadruddin
    Bremer, Peer-Timo
    Bude, Rick H. S.
    Chang, C. S.
    Chen, Lei
    Churchill, R. M.
    Citrin, Jonathan
    Gaffney, Jim A.
    Gainaru, Ana
    Gekelman, Walter
    Gibbs, Tom
    Hamaguchi, Satoshi
    Hill, Christian
    Humbird, Kelli
    Jalas, Soeren
    Kawaguchi, Satoru
    Kim, Gon-Ho
    Kirchen, Manuel
    Klasky, Scott
    Kline, John L.
    Krushelnick, Karl
    Kustowski, Bogdan
    Lapenta, Giovanni
    Li, Wenting
    Ma, Tammy
    Mason, Nigel J.
    Mesbah, Ali
    Michoski, Craig
    Munson, Todd
    Murakami, Izumi
    Najm, Habib N.
    Olofsson, K. Erik J.
    Park, Seolhye
    Peterson, J. Luc
    Probst, Michael
    Pugmire, David
    Sammuli, Brian
    Sawlani, Kapil
    Scheinker, Alexander
    Schissel, David P.
    Shalloo, Rob J.
    Shinagawa, Jun
    Seong, Jaegu
    Spears, Brian K.
    Tennyson, Jonathan
    Thiagarajan, Jayaraman
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2023, 51 (07) : 1750 - 1838
  • [28] Control of MIMO nonlinear systems: A data-driven model inversion approach
    Novara, Carlo
    Milanese, Mario
    AUTOMATICA, 2019, 101 : 417 - 430
  • [29] Review of model-based and data-driven approaches for leak detection and location in water distribution systems
    Hu, Zukang
    Chen, Beiqing
    Chen, Wenlong
    Tan, Debao
    Shen, Dingtao
    WATER SUPPLY, 2021, 21 (07) : 3282 - 3306
  • [30] Data-driven seismic response prediction of structural components
    Luo, Huan
    Paal, Stephanie German
    EARTHQUAKE SPECTRA, 2022, 38 (02) : 1382 - 1416