Slice Spirallike Functions over Quaternions

被引:0
作者
Xu, Zhenghua [1 ]
Zhang, Die [1 ]
Liu, Yuan [1 ]
Si, Jiajia [2 ]
机构
[1] Hefei Univ Technol, Sch Math, Hefei 230601, Peoples R China
[2] Hainan Univ, Sch Sci, Haikou 570228, Peoples R China
关键词
Slice regular function; Spirallike function; Quaternion; REGULAR FUNCTIONS; GROWTH; MAPPINGS;
D O I
10.1007/s11785-023-01410-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the analogue of spirallikeness for slice regular functions of one quaternionic variable. In particular, we introduce the concept of slice & gamma;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma $$\end{document}-spirallike functions of order & alpha;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} and investigate its geometric function theory, such as coefficient estimates, growth and covering theorems. As a byproduct, the Robertson's result concerning the radii of starlikeness for holomorphic spirallike functions is generalized into slice regular functions by a very concise method, but new even for the classical case.
引用
收藏
页数:17
相关论文
共 23 条
  • [1] Successive coefficients for spirallike and related functions
    Arora, Vibhuti
    Ponnusamy, Saminathan
    Sahoo, Swadesh Kumar
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 2969 - 2979
  • [2] THE GROWTH AND 1/4-THEOREMS FOR STARLIKE MAPPINGS IN CN
    BARNARD, RW
    FITZGERALD, CH
    GONG, S
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 1991, 150 (01) : 13 - 22
  • [3] Growth Estimates for the Numerical Range of Holomorphic Mappings and Applications
    Bracci, Filippo
    Levenshtein, Marina
    Reich, Simeon
    Shoikhet, David
    [J]. COMPUTATIONAL METHODS AND FUNCTION THEORY, 2016, 16 (03) : 457 - 487
  • [4] Clunie J., 1959, J. Lond. Math. Soc, V34, P215, DOI [10.1112/jlms/s1-34.2.215, DOI 10.1112/JLMS/S1-34.2.215]
  • [5] Colombo F, 2011, PROG MATH, V289, P1, DOI 10.1007/978-3-0348-0110-2
  • [6] A PROOF OF THE BIEBERBACH CONJECTURE
    DEBRANGES, L
    [J]. ACTA MATHEMATICA, 1985, 154 (1-2) : 137 - 152
  • [7] On some geometric properties of slice regular functions of a quaternion variable
    Gal, Sorin G.
    Oscar Gonzalez-Cervantes, J.
    Sabadini, Irene
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (10) : 1431 - 1455
  • [8] Univalence results for slice regular functions of a quaternion variable
    Gal, Sorin G.
    Oscar Gonzalez-Cervantes, J.
    Sabadini, Irene
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2015, 60 (10) : 1346 - 1365
  • [9] A new approach to Cullen-regular functions of a quaternionic variable
    Gentili, G
    Struppa, DC
    [J]. COMPTES RENDUS MATHEMATIQUE, 2006, 342 (10) : 741 - 744
  • [10] Gentili G., 2022, Regular Functions of a Quaternionic Variable, DOI [10.1007/978-3-031-07531-5, DOI 10.1007/978-3-031-07531-5]