Investigation of fractional diabetes model involving glucose-insulin alliance scheme

被引:16
作者
Khirsariya, Sagar R. [1 ]
Rao, Snehal B. [2 ]
Hathiwala, Gautam S. [1 ]
机构
[1] Marwadi Univ, Dept Math, Rajkot Morbi Rd, Rajkot 360003, Gujarat, India
[2] Maharaja Sayajirao Univ Baroda, Fac Technol & Engn, Dept Appl Math, Vadodara 390001, Gujarat, India
关键词
Fractional diabetes model; Atangana-Baleanu fractional derivative; Adomian decomposition Laplace transform method; Stability analysis; 92Bxx; 92Dxx; DECOMPOSITION METHOD;
D O I
10.1007/s40435-023-01293-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The ultimate aim of this study is to develop and analyze a comprehensive regulatory framework for managing glucose and insulin in blood in the presence of diabetes mellitus. This innovative mathematical model of diabetes is demonstrated and examined in fractional order by involving ABC fractional derivative. This whole framework is worked out using a semi-analytical technique, namely the Adomian decomposition Laplace transform method. To prove the efficiency of this ADLTM technique, the results are compared with other classical methods, viz. homotopy perturbation transform method and modified homotopy analysis transform method. Using the Banach fixed point theorem, the existence and stability analysis of the solution has been proved. Certain figures and tables are illustrated for this fractional diabetes model with some fractional order. We used the Maple software to generate all the numerics and graphical plots. This detailed investigation also explores how well the level of glucose and insulin affects the dynamics of disease infection.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 44 条
[1]   A REVIEW OF THE DECOMPOSITION METHOD AND SOME RECENT RESULTS FOR NONLINEAR EQUATIONS [J].
ADOMIAN, G .
MATHEMATICAL AND COMPUTER MODELLING, 1990, 13 (07) :17-43
[2]   Modeling and numerical investigation of fractional-order bovine babesiosis disease [J].
Ahmad, Aqeel ;
Farman, Muhammad ;
Naik, Parvaiz Ahmad ;
Zafar, Nayab ;
Akgul, Ali ;
Saleem, Muhammad Umer .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (03) :1946-1964
[3]   Dynamics of a fractional order Zika virus model with mutant [J].
Ali, Aatif ;
Islam, Saeed ;
Khan, M. Riaz ;
Rasheed, Saim ;
Allehiany, F. M. ;
Baili, Jamel ;
Khan, Muhammad Altaf ;
Ahmad, Hijaz .
ALEXANDRIA ENGINEERING JOURNAL, 2022, 61 (06) :4821-4836
[4]   Theoretical and numerical analysis of novel COVID-19 via fractional order mathematical model [J].
Ali, Amjad ;
Khan, Muhammad Yasin ;
Sinan, Muhammad ;
Allehiany, F. M. ;
Mahmoud, Emad E. ;
Abdel-Aty, Abdel-Haleem ;
Ali, Gohar .
RESULTS IN PHYSICS, 2021, 20
[5]  
Atangana A, 2016, ARXIV
[6]  
Chauhan J., 2023, RES CONTROL OPTIM, V13
[7]   Chaos and coexisting attractors in glucose-insulin regulatory system with incommensurate fractional-order derivatives [J].
Debbouche, Nadjette ;
Almatroud, A. Othman ;
Ouannas, Adel ;
Batiha, Iqbal M. .
CHAOS SOLITONS & FRACTALS, 2021, 143
[8]   Levy noise impact on a stochastic hepatitis B epidemic model under real statistical data and its fractal-fractional Atangana-Baleanu order model [J].
Din, Anwarud ;
Li, Yongjin .
PHYSICA SCRIPTA, 2021, 96 (12)
[9]   Rich Dynamics of Discrete Time-Delayed Moran-Ricker Model [J].
Eskandari, Z. ;
Alidousti, J. ;
Avazzadeh, Z. .
QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2023, 22 (03)
[10]   Theoretical and numerical bifurcation analysis of a predator-prey system with ratio-dependence [J].
Eskandari, Z. ;
Avazzadeh, Z. ;
Ghaziani, R. Khoshsiar .
MATHEMATICAL SCIENCES, 2024, 18 (02) :205-216