Functional connectome fingerprinting and stability in multiple sclerosis

被引:0
作者
Mantwill, Maron [1 ,2 ,3 ]
Asseyer, Susanna [4 ,5 ,6 ,7 ]
Chien, Claudia [4 ,5 ,7 ,8 ]
Kuchling, Joseph [2 ,4 ,5 ,9 ]
Schmitz-Huebsch, Tanja [4 ,5 ,6 ,7 ]
Brandt, Alexander U. [4 ,6 ,7 ,10 ]
Haynes, John-Dylan [3 ,11 ,12 ]
Paul, Friedemann [2 ,4 ,5 ,7 ,9 ]
Finke, Carsten [2 ,3 ]
机构
[1] Hertzbergstr 12, D-12055 Berlin, Germany
[2] Charite Univ Med Berlin, Dept Neurol, Berlin, Germany
[3] Humboldt Univ, Fac Philosophy, Berlin Sch Mind & Brain, Berlin, Germany
[4] Max Delbruck Ctr Mol Med Helmholtz Assoc & Charite, Expt & Clin Res Ctr, Berlin, Germany
[5] Charite Univ Med Berlin, Neurosci Clin Res Ctr, Berlin, Germany
[6] Charite Univ Med Berlin, Expt & Clin Res Ctr, Berlin, Germany
[7] Max Delbruck Ctr Mol Med Helmholtz Assoc MDC, Berlin, Germany
[8] Charite Univ Med Berlin, Dept Psychiat & Neurosci, Charitepl, Berlin, Germany
[9] Berlin Inst Hlth, Berlin, Germany
[10] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[11] Charite Univ Med Berlin, Berlin Ctr Adv Neuroimaging, Berlin, Germany
[12] Charite Univ Med Berlin, Bernstein Ctr Computat Neurosci, Berlin, Germany
关键词
Connectome Fingerprinting; multiple sclerosis; functional connectome; normative variation; resting state fMRII; CONNECTIVITY;
D O I
10.1177/20552173231195879
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Background: Functional connectome fingerprinting can identify individuals based on their functional connectome. Previous studies relied mostly on short intervals between fMRI acquisitions.Objective: This cohort study aimed to determine the stability of connectome-based identification and their underlying signatures in patients with multiple sclerosis and healthy individuals with long follow-up intervals.Methods: We acquired resting-state fMRI in 70 patients with multiple sclerosis and 273 healthy individuals with long follow-up times (up to 4 and 9 years, respectively). Using functional connectome fingerprinting, we examined the stability of the connectome and additionally investigated which regions, connections and networks supported individual identification. Finally, we predicted cognitive and behavioural outcome based on functional connectivity.Results: Multiple sclerosis patients showed connectome stability and identification accuracies similar to healthy individuals, with longer time delays between imaging sessions being associated with accuracies dropping from 89% to 76%. Lesion load, brain atrophy or cognitive impairment did not affect identification accuracies within the range of disease severity studied. Connections from the fronto-parietal and default mode network were consistently most distinctive, i.e., informative of identity. The functional connectivity also allowed the prediction of individual cognitive performances.Conclusion: Our results demonstrate that discriminatory signatures in the functional connectome are stable over extended periods of time in multiple sclerosis, resulting in similar identification accuracies and distinctive long-lasting functional connectome fingerprinting signatures in patients and healthy individuals.
引用
收藏
页数:12
相关论文
共 35 条
  • [1] Contribution of normal aging to brain atrophy in MS
    Azevedo, Christina J.
    Cen, Steven Y.
    Jaberzadeh, Amir
    Zheng, Ling
    Hauser, Stephen L.
    Pelletier, Daniel
    [J]. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2019, 6 (06):
  • [2] Evaluating and reducing the impact of white matter lesions on brain volume measurements
    Battaglini, Marco
    Jenkinson, Mark
    De Stefano, Nicola
    [J]. HUMAN BRAIN MAPPING, 2012, 33 (09) : 2062 - 2071
  • [3] Functional connectome stability and optimality are markers of cognitive performance
    Corriveau, Anna
    Yoo, Kwangsun
    Kwon, Young Hye
    Chun, Marvin M.
    Rosenberg, Monica D.
    [J]. CEREBRAL CORTEX, 2023, 33 (08) : 5025 - 5041
  • [4] Altered basal ganglia functional connectivity in multiple sclerosis patients with fatigue
    Finke, C.
    Schlichting, J.
    Papazoglou, S.
    Scheel, M.
    Freing, A.
    Soemmer, C.
    Pech, L. M.
    Pajkert, A.
    Pfueller, C.
    Wuerfel, J. T.
    Ploner, C. J.
    Paul, F.
    Brandt, A. U.
    [J]. MULTIPLE SCLEROSIS JOURNAL, 2015, 21 (07) : 925 - 934
  • [5] Beyond fingerprinting: Choosing predictive connectomes over reliable connectomes
    Finn, Emily S.
    Rosenberg, Monica D.
    [J]. NEUROIMAGE, 2021, 239
  • [6] Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity
    Finn, Emily S.
    Shen, Xilin
    Scheinost, Dustin
    Rosenberg, Monica D.
    Huang, Jessica
    Chun, Marvin M.
    Papademetris, Xenophon
    Constable, R. Todd
    [J]. NATURE NEUROSCIENCE, 2015, 18 (11) : 1664 - 1671
  • [7] Movement-related effects in fMRI time-series
    Friston, KJ
    Williams, S
    Howard, R
    Frackowiak, RSJ
    Turner, R
    [J]. MAGNETIC RESONANCE IN MEDICINE, 1996, 35 (03) : 346 - 355
  • [8] Functional Brain Networks Are Dominated by Stable Group and Individual Factors, Not Cognitive or Daily Variation
    Gratton, Caterina
    Laumann, Timothy O.
    Nielsen, Ashley N.
    Greene, Deanna J.
    Gordon, Evan M.
    Gilmore, Adrian W.
    Nelson, Steven M.
    Coalson, Rebecca S.
    Snyder, Abraham Z.
    Schlaggar, Bradley L.
    Dosenbach, Nico U. F.
    Petersen, Steven E.
    [J]. NEURON, 2018, 98 (02) : 439 - +
  • [9] The individual functional connectome is unique and stable over months to years
    Horien, Corey
    Shen, Xilin
    Scheinost, Dustin
    Constable, R. Todd
    [J]. NEUROIMAGE, 2019, 189 : 676 - 687
  • [10] Longitudinal Network Changes and Conversion to Cognitive Impairment in Multiple Sclerosis
    Huiskamp, Marijn
    Eijlers, Anand J. C.
    Broeders, Tommy A. A.
    Pasteuning, Jasmin
    Dekker, Iris
    Uitdehaag, Bernard M. J.
    Barkhof, Frederik
    Wink, Alle-Meije
    Geurts, Jeroen J. G.
    Hulst, Hanneke E.
    Schoonheim, Menno M.
    [J]. NEUROLOGY, 2021, 97 (08) : E794 - E802